Skip to main content

Predictions of Turbulent Drag Reduction for a Linear Viscoelastic Fluid

  • Conference paper
The Influence of Polymer Additives on Velocity and Temperature Fields
  • 174 Accesses

Summary

A link between the decoupling of the Reynolds stress and the temporal relaxation of turbulent fluctuations, controlled by a finite propagation of momentum at small spatial scales, has been developed for turbulent flow of a Maxwell fluid. A characteristic time between turbulent bursts from the wall region, a relaxation time for the velocity, space-time correlation, and the intensity of turbulent fluctuations normal to the mean flow govern the behavior of the Reynolds stress in the near wall region. The theory predicts quantitative extents of drag reduction in agreement with experiments and, more importantly, contains the familiar saturation and onset features of turbulent drag reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seyer, F. A. and A. B. Metzner; Turbulence Phenomena in Drag-Reducing Systems. AIChE J. 15 (1969) 426.

    Article  Google Scholar 

  2. Logan, S. E.; Laser Velocimeter Measurement of Reynold’s Stress and Turbulence in Dilute Polymer Solutions. AIAA J. 10 (1972) 962.

    Article  ADS  Google Scholar 

  3. Ruckenstein, E; On the Mechanism of Drag Reduction in Turbulent Flow of Viscoelastic Liquids. Chem. Eng. Sci. 26 (1971) 1075.

    Article  Google Scholar 

  4. Einstein, H. A. and H. Li; The Viscous Sublayer Along a Smooth Boundary, Proc. Am. Soc. Civil Engrs., J. Eng. Mech. Div., 82, 293 (1956).

    Google Scholar 

  5. Monin, A. S. and A. M. Yaglom; Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1. Cambridge: The MIT Press 1971.

    Google Scholar 

  6. Tennekes, H. and J. L. Lumley; A First Course in Turbulence. Cambridge: The MIT Press 1972.

    Google Scholar 

  7. Astarita, G. and G. Marrucci; Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill 1974.

    Google Scholar 

  8. Lumley, J. L.; Drag Reduction by Additives. Ann. Rev. Fluid Mech. 1 (1969) 367.

    Article  ADS  Google Scholar 

  9. Armstrong, R. and M. S. Jhon; A Self-Consistent Theoretical Approach to Polymer Induced Turbulent Drag Reduction. Dept. Chem. Eng., Carnegie-Mellon University (personal communication) 1984.

    Google Scholar 

  10. Hershey, H. C. and J. L. Zakin; Existence of Two Types of Drag Reduction in Pipe Flow of Dilute Polymer Solutions. Ind. Eng. Chem. Fund. 6 (1967) 381.

    Article  Google Scholar 

  11. Patterson, G. K. and J. L. Zakin; Prediction of Drag Reduction with a Viscoelastic Model. AIChE J. 14 (1968) 434.

    Article  Google Scholar 

  12. Virk, P. S.; Drag Reduction Fundamentals. AIChE J. 21 (1975) 625.

    Article  Google Scholar 

  13. Snellenberger, R. W. and C. A. Petty; Estimates of Average Mass Transfer Rates Using An Approximate Hydrodynamic Green’s Function. Chem. Eng. Commun. 20 (1983) 311

    Article  Google Scholar 

  14. Hill, J. C. and C. A. Petty; A Statistical Theory of Turbulent Mass Transfer Induced By a Mean Concentration Gradient. PACHEC III, Seoul, Korea, May 8–11, 1983.

    Google Scholar 

  15. Morse, P. M. and H. Feshbach; Methods of Theoretical Physics, Part I. New York: McGraw-Hill 1953.

    MATH  Google Scholar 

  16. Berman, N. S.; Drag Reduction by Polymers. Ann. Rev. Fluid Mech. 10 (1978) 47.

    Article  ADS  Google Scholar 

  17. Schummer, P. and W. Thielen; Structure of Turbulence in Viscoelastic Fluids. Chem. Eng. Commun. 4 (1980) 593.

    Article  Google Scholar 

  18. Lee, W. K., R. C. Vaseleski, and A. B. Metzner; Turbulent Drag Reduction in Polymeric Solutions Containing Suspended Fibers. AIChE J. 20 (1974) 128.

    Article  Google Scholar 

  19. Fortuna, G. and T. J. Hanratty; The Influence of Drag-Reducing Polymers on Turbulence in the Viscous Sublayer. J. Fluid Mech. 53 (1972) 575.

    Article  ADS  Google Scholar 

  20. Achia, B. V., and D. W. Thompson; Structure of the Turbulent Boundary in Drag-Reducing Pipe Flow. J. Fluid Mech. 81 (1977) 439.

    Article  ADS  Google Scholar 

  21. Yao, H. T.; The Application of Turbulent Relaxation Models To Mass Transfer Near Interfaces At High Molecular Schmidt Numbers. Ph.D. Dissertation, Michigan State University 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer, Berlin Heidelberg

About this paper

Cite this paper

Lyons, S., Petty, C.A. (1985). Predictions of Turbulent Drag Reduction for a Linear Viscoelastic Fluid. In: Gampert, B. (eds) The Influence of Polymer Additives on Velocity and Temperature Fields. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82632-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82632-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82634-4

  • Online ISBN: 978-3-642-82632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics