Skip to main content

Acoustoelectronic Rayleigh Wave Devices

  • Conference paper

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 2))

Abstract

Electrons or charged particles can be made to interact with the electric fields of Rayleigh waves in piezoelectric crystal surfaces. The charged particles can be in vacuum, in semiconductors or bound to traps in solids or on surfaces. During the past two decades a large variety of acoustoelectronic amplifiers, signal processors and image processing devices were demonstrated. I shall discuss in some detail the more successful versions of these devices by quoting or reproducing device characteristics that appeared primarily in the 1972 to 1984 Ultrasonics Symposium Proceedings. The reader interested in the full range of concepts and devices could refer to the references contained in the articles from which this material is drawn.

Supported by the U.S. Air Force and Army

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.M. Lakin and H. J. Shaw: “Surface Wave Delay Line Amplifiers”, IEEE MTT Trans., vol. MTT-17, pp. 913–915, Nov. 1969

    Google Scholar 

  2. R.M. White: “Surface Elastic Wave Propagation and Amplification”, IEEE Trans. Electron Devices, vol. ED-14, pp. 181–189, (1967)

    Google Scholar 

  3. R.W. Ralston: “Stable CW Operation of Gap-Coupled Silicon-on-Sapphire to LiNb03 Acoustoelectric Amplifiers”, IEEE 1975 Ultrasonics Symp. Proc., pp. 217–221

    Google Scholar 

  4. G.S. Kino and T.M. Reeder: “A Normal Mode Theory for the Rayleigh Wave Amplifier”, IEEE Trans. Electron Dev., vol. ED-18, pp. 909–920 Oct. 1971

    Google Scholar 

  5. G.S. Kino and L.A. Coldren: “Noise Figure Calculation for Rayleigh Wave Amplifier”, Appl. Phy. Lett., vol. 22, pp. 50–52, Jan. 1973

    Article  ADS  Google Scholar 

  6. L.A. Coldren: “Monolithic Acoustic Surface-Wave Amplifier”, Appl. Phys. Lett., vol. 18, pp. 317–321, April 1971

    Article  ADS  Google Scholar 

  7. L.A. Coldren: “CW Monolithic Acoustic Surface Wave Amplifier Incorporated in a av Waveguide”, Appl. Phys. Lett., vol. 23, pp. 117–118, Aug. 1973

    Article  ADS  Google Scholar 

  8. C.F. Quate and R.B. Thompson: “Convolution and Correlation in Real Time with Nonlinear Acoustics”, Appl. Phys. Lett., vol. 16, pp. 494–496, 15 June 1970

    Article  Google Scholar 

  9. W.C. Wang: “Surface Wave Convolver via Space Charge Nonlinearity”, IEEE 1972 Ultrasonics Symp. Proc., pp. 319–322

    Google Scholar 

  10. M.C. Maerfeld: “Rayleigh Wave Non-Linear Components”, (To be published in Springer-Verlag, Berlin, Heidelberg), 1985

    Google Scholar 

  11. I. Yao and S.A. Reible: “Wide Bandwidth Acoustoelectronic Convolvers”, IEEE 1979 Ultrasonics Symp. Proc., pp. 703–707

    Google Scholar 

  12. L.R. Adkins: “Strip Coupled AlN and Si on Sapphire Convolvers”, IEEE 1973 Ultrasonics Symp. Proc., pp. 150–154

    Google Scholar 

  13. D.P. Morgan: “Signal Processing Using the SAW Diode Convolver”, IEEE 1973 Ultrasonics Symp. Proc., pp. 138–142

    Google Scholar 

  14. B.T. Khuri-Yakub and G.S. Kino: “A Monolithic Zinc Oxide on Silicon Convolver”, Appl. Phys. Lett., vol. 25, pp. 188–190, July 15, 1974

    Google Scholar 

  15. E. Stern and R.C. Williamson: “A New Adaptive Signal Processing Concept”, Electron. Lett., vol. 10, pp. 58–59, Mar. 1974

    Article  Google Scholar 

  16. A.G. Bert, B. Epsztein and G. Kantorowicz: “Charge Storage of Acoustic rf Signals”, Appl. Phys. Lett., vol. 21, pp. 50–52, 15 July 1972

    Article  Google Scholar 

  17. K.A. Ingebrigtsen, R.A. Cohen and R.W. Mountain: “A Schottky-Diode Acoustic Memory and Correlator”, Appl. Phys. Lett., vol. 26, pp. 597–599, 1 June 1975

    ADS  Google Scholar 

  18. D.H. Hurlburt, R.W. Ralston, R.P. Baker and E. Stern: “An Acoustoelectric Schottky-Diode Memory Correlator Subsystem”, IEEE 1978 Ultrasonics Symp. Proc., pp. 35–38

    Google Scholar 

  19. C. Maerfeld and P.H. Defranould: “A Surface Wave Memory Device Using P-N Diodes”, IEEE 1975 Ultrasonics Symp. Proc., pp. 209–213

    Google Scholar 

  20. H.C. Tuan, B.T. Khuri-Yakub and G.S. Kino: “A New Zinc Oxide on Silicon Monolithic Storage Correlator”, IEEE 1977 Ultrasonics Symp. Proc., pp. 498–502

    Google Scholar 

  21. R.S. Wagers, B.F. Hall and M.R. Melloch: “Hybrid GaAs/LiNb03 SAW Memory Correlator”, IEEE 1984 Ultrasonics Symp. Proc., pp. 294–298

    Google Scholar 

  22. J.U. Plaines: “Surface Acoustic-Wave Devices: Past Successes and Future Prospects”, IEEE 1974 Ultrasonics Symp. Proc., pp. 140–148

    Google Scholar 

  23. J.B. Green, G.S. Kino and J.D. Shott: “The SAW/FET: A New Programmable SAW Transversal Filter”, IEEE 1982 Ultrasonics Symp. Proc., pp. 437–441

    Google Scholar 

  24. D.E. Oates, et. al.: “Wide-Band SAW/FET Programmable Transversal Filter”, IEEE 1984 Ultrasonics Symp. Proc., pp. 314–318

    Google Scholar 

  25. P.J. Hagon, F.B. Micheletti and R.N. Seymour: “Integrated Programmable Analog Matched Filters for Spread Spectrum Applications”, IEEE 1973 Ultrasonics Symp. Proc., pp. 334–337

    Google Scholar 

  26. F.S. Hickernell, D.E. Olson and M.D. Adamo: “Monolithic Surface Wave Transversal Filter”, IEEE 1977 Ultrasonics Symp. Proc., pp. 615–619

    Google Scholar 

  27. H. Gautier, C. Maerfeld and P. Tournois: “Diode Acoustic Devices Applied to Optical Imaging”, IEEE 1978 Ultrasonics Symp. Proc., pp. 231–238

    Google Scholar 

  28. F.J. Leonberger, et. al.: “Acoustoelectrically Scanned Gap-Coupled Si-Diode Array/LiNb03 Imaging Devices”, IEEE 1977 Ultrasonics Symp. Proc., pp. 456–459

    Google Scholar 

  29. R.J. Schwartz, S.D. Gaalema, R.L. Gunshor: “A Surface Wave Interaction Charge Coupled Device”, IEEE 1976 Ultrasonics Symp. Proc., pp. 197–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stern, E. (1985). Acoustoelectronic Rayleigh Wave Devices. In: Ash, E.A., Paige, E.G.S. (eds) Rayleigh-Wave Theory and Application. Springer Series on Wave Phenomena, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82621-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82621-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82623-8

  • Online ISBN: 978-3-642-82621-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics