Skip to main content

Heavy-Fermion Superconductivity: Experimental Status Report

  • Conference paper
Theory of Heavy Fermions and Valence Fluctuations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 62))

Abstract

New observations are reported for the heavy-fermion superconductors CeCu2Si2, UBe13 and UPt3. These results are discussed with respect to the following issues: (i) the competition between different cooperative phenomena in CeCu2Si2; (ii) the question whether the whole Fermi surface contributes to the superconducting transition in the three compounds; (iii) the nature of the superconducting order parameter. Taking into account more published data for these systems, we can delineate the present status of the field: CeCu2Si2 behaves as a singlet superconductor with possibly anisotropic Cooper pairing. UPt3 appears to possess an anisotropic order parameter, either of the singlet or triplet type. No definite conclusions can yet be drawn for Ube13, mainly because its superconducting properties are severely modified by field and temperature dependences of the normal- state parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For an early report, see: F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. F.anz and H. Schafer: J. Magn. Magn. Mat. 15–18, 889 (1980)

    Google Scholar 

  2. For a recent review, see: G.R. Stewart: Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  3. R.J. Trainor, M.B. Brodsky and H.V. Culbert: Phys. Rev. Lett. 34, 1019 (1975)

    Article  ADS  Google Scholar 

  4. K. Andres, J.E. Graebner and H.R. Ott: Phys. Rev. Lett. 35, 1779 (1975)

    Article  ADS  Google Scholar 

  5. Y. Onuki, Y. Shimizu and T. Komatsubara: J. Phys. Soc. Jpn. 53, 1210 (1984) G. R. Stewart, Z. Fisk and M. Wire: Phys. Rev. B30, 482 (1984) H. R. Ott, H. Rudigier, Z. Fisk, J.O. Willis and G.R. Stewart: Solid State Commun. 53, 235 (1985)

    Article  ADS  Google Scholar 

  6. U. Rauchschwalbe, U. Gottwick, U. Ahlheim, H.M. Mayer and F. Steglich: J. Less Common Metals, in press

    Google Scholar 

  7. R.J. Trainor, M.B. Brodsky, B.D. Dunlap and G.K. Shenoy, Phys. Rev. Lett. 37, 1511 (1976)

    Article  ADS  Google Scholar 

  8. B. Barbara, J.X. Boucherle, J.L. Buevoz, M.F. Rossignol and J. Schweizer: Solid State Commun. 24, 481 (1977) C.D. Bredl, F. Steglich and K.D. Schotte: Z. Phys. B29, 327 (1978)

    Article  Google Scholar 

  9. K. Winzer and W. Felsch: J. Phys. (Paris) 39, C6–832 (1978) T. Komatsubara, T. Suzuki, M. Kawakami, S. Kunii, T. Fujita, Y. Ishika- wa, A. Takase, K. Kojima, M. Suzuki, Y. Aoki, K. Takegahara and T. Kasuya: Ref. 1, p. 963

    Google Scholar 

  10. H.R. Ott, H. Rudigier, P. Delsing and Z. Fisk: Phys. Rev. Lett. 52, 1551 (1984)

    Article  ADS  Google Scholar 

  11. Z. Fisk, G.R. Stewart, J.O. Willis, H.R. Ott and F. Hulliger: Phys. Rev. B30, 6360 (1984)

    Article  ADS  Google Scholar 

  12. F. Steglich, J. Aarts, C.D. Bredl, W. Lieke,D. Meschede, W. Franz and H. SchSfer: Phys. Rev. Lett. 43, 1892 (1979)

    Article  ADS  Google Scholar 

  13. U. Rauchschwalbe, W. Lieke, C.D. Bredl, F. Steglich, J. Aarts, K.M. Martini and A.C. Mota: Phys. Rev. Lett. 49, 1448 (1982)

    Article  ADS  Google Scholar 

  14. H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith: Phys. Rev. Lett. 50, 1595 (1983)

    Article  ADS  Google Scholar 

  15. G.R. Stewart, Z. Fisk, J.O. Willis and J.L. Smith: Phys. Rev. Lett. 52, 679 (1984)

    Article  ADS  Google Scholar 

  16. B. Batlogg, J.P. Remeika, A.S. Cooper and Z. Fisk: J. Appl. Phys. 55, 2001 (1984) B. Batlogg, J.P. Remeika, A.S. Cooper, G.R. Stewart, Z. Fisk and J.O. Willis: J. Magn. Magn. Mat. 47amp; 48, 42 (1985)

    Google Scholar 

  17. U. Rauchschwalbe, W. Baus, S. Horn, H. Spille, F. Steglich, F.R. de Boer, J. Aarts, W. Assmus and M. Herrmann: J. Magn. Magn. Mat. 47& 48, 33 (1985)

    Article  ADS  Google Scholar 

  18. C.D. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann and J. Aarts: J. Magn. Magn. Mat. 31–34 373 (1983)

    Article  ADS  Google Scholar 

  19. C.D. Bredl, S. Horn, F. Steglich, B. Lathi and R.M. Martin: Phys. Rev. Lett. 52, 1982 (1984)

    Article  ADS  Google Scholar 

  20. H. Razafimandimby, P. Fulde and J. Keller: Z. Phys. B54, 111 (1984) N. d’Ambrumenil and P. Fulde: Ref. 17, p. 1

    Article  ADS  Google Scholar 

  21. C.M. Varma: Bull. Am. Phys. Soc. 29, 404 (1984); Comments in Solid State Physics, in press

    Google Scholar 

  22. H.R. Ott, H. Rudigier, T.M. Rice, K. Ueda, Z. Fisk and J.L. Smith: Phys. Rev. Lett. 52, 1915 (1984)

    Article  ADS  Google Scholar 

  23. P.W. Anderson: Phys. Rev. B30, 4000 (1984)

    Google Scholar 

  24. O. Vails and Z. Tesanovic: Phys. Rev. Lett. 53, 477 (1984)

    Article  Google Scholar 

  25. M. Tachiki and S. Maekawa: Phys. Rev. B29, 2497 (1984)

    Article  ADS  Google Scholar 

  26. N. Grewe, Z. Phys. B56, 111 (1984)

    Article  ADS  Google Scholar 

  27. K. Miyake, T. Matsuura, H. Jichu and J. Nagaoka: Progr. Theor. Phys. 72, 1063 (1984)

    Article  ADS  Google Scholar 

  28. F.J. Ohkawa and H. Fukuyama: J. Phys. Soc. Jpn. 53, 4344 (1984)

    Article  ADS  Google Scholar 

  29. A.W. Overhauser and J. Appel: Phys. Rev. B31 193 (1985)

    Google Scholar 

  30. T. Oguchi, A.J. Freeman and G.W. Crabtree: preprint (1985)

    Google Scholar 

  31. G.W. Hull, J.H. Wernick, Т.Н. Geballe, J.V. Waszcak and J.E. Bernardi- ni: Phys. Rev. B24, 6715 (1981)

    Google Scholar 

  32. W. Lieke, U. Rauchschwalbe, C.D. Bredl, F. Steglich, J. Aarts and F.R. de Boer: J. Appl. Phys. 53, 2111 (1982)

    Article  ADS  Google Scholar 

  33. F.G. Aliev, N.B. Brandt, V.V. Moshchalkov and S.M. Chudinov: Solid State Commun. 45, 215 (1983)

    Article  ADS  Google Scholar 

  34. G.R. Stewart, Z. Fisk and J.O. Willis: Phys. Rev. B28, 172 (1983)

    Article  ADS  Google Scholar 

  35. Z. Kletowski: J. Less Common Metals 95, 127 (1983)

    Article  Google Scholar 

  36. F.G. Aliev, N.B. Brandt, V.V. Moshchalkov and S.M. Chudinov: J. Low Temp. Phys. 57, 61 (1984)

    Article  ADS  Google Scholar 

  37. Here, a bulk modulus В = 1.1 • 103 kbar for CeCu2Si2 was used, see: I.L. Spain, F. Steglich, U. Rauchschwalbe and H.D. Hochheimer: Proc. Xth AIRAPT Conference, Amsterdam (1985); Physica B, in press

    Google Scholar 

  38. W. Assmus, M. Herrmann, U. Rauchschwalbe, S.Riegel, W. Lieke, H. S.il-le, S. Horn, G. Weber, F. Steglich and G. Cordier: Phys. Rev. Lett. 52, 469 (1984)

    ADS  Google Scholar 

  39. H. Spille, U. Rauchschwalbe and F. Steglich, Helv. Phys. Acta 56, 165 (1983)

    Google Scholar 

  40. S. Doniach: Physica 91B, 231 (1977) M. Lavagna, C. Lacroix and M. Cyrot: Phys. Lett. 90 A, 210 (1982)

    Google Scholar 

  41. A more complex Tc(p) dependence for p ≳ 20 kbar was recently reported by B. Bellarbi, A. Benoit, D. Jaccard, J.M. Mignot and H.F. Braun: Phys. Rev. B30, 1182 (1984)

    Google Scholar 

  42. M. Ishikawa, H.F. Braun and J.L. Jorda: Phys. Rev. B27, 3092 (1983)

    Google Scholar 

  43. W. Baus: Diploma Thesis, TH Darmstadt (1985), unpublished

    Google Scholar 

  44. C.D. Bredl, W. Lieke, R. Schefzyk, M. Lang, U. Rauchschwalbe, F. Steglich, S. Riegel, R. Felten, G. Weber, J. Klaasse, J. Aarts and F.R. de Boer: Ref. 17, p. 30

    Google Scholar 

  45. The χ(T)-reSults on “stoichiometric” single crystals grown by other techniques are similar to those in Fig. 2b, see Ref. 16 and Y. Onuki, Y. Furukawa and T. Komatsubara: J. Phys. Soc. Jpn. 53, 2197 (1984). One should also note that such crystals show a large magnetoresistivity, which is almost absent in Cu-excess crystals [17]

    Google Scholar 

  46. ρ0-values for superconducting CeCu2Si2 single-crystal and polycrystal- line samples range between 3.5 µΩcm [13] and 60 µΩcm [38], while for non-super conducting ones ρ0 ≳ 100 liftcm [38]

    Google Scholar 

  47. J. Flouquet, J.C. Lasjaunias, J. Peyrard and M. Ribault: Ref. 32, p. 2127

    Google Scholar 

  48. C.D. Bredl, N. Grewe, F. Steglich and E. Umlauf: Proc. Int. Conf. on Low Temperature Physics, LT 17, U. Eckern, A. Schmid, W. Weber, H. Wühl, eds., North-Holland, Amsterdam (1984),p. 327

    Google Scholar 

  49. F. Steglich, C.D. Bredl, W. Lieke, U. Rauchschwalbe and G. Sparn: Physica 126В, 82 (1984)

    Google Scholar 

  50. D. Jaccard and J. Flouquet: Ref. 17, p. 45

    Google Scholar 

  51. T. Fujita, T. Satoh, Y. Onuki and T. Komatsubara: Ref. 17, p. 66

    Google Scholar 

  52. F. Steglich, U. Rauchschwalbe, U. Gottwick, H.M. Mayer, G. Sparn, N. Grewe, U. Poppe and J.J.M. Franse: J. Appl. Phys. 57, 3054 (1985)

    Article  ADS  Google Scholar 

  53. R.M. Martin: Phys. Rev. Lett. 48, 362 (1982)

    Article  ADS  Google Scholar 

  54. The Schottky-type anomaly at elevated temperatures is not compatible with the crystal-field level scheme of three Kramers doublets at OK, 140K and 36ОК (curve a) as derived from neutron-scattering results [S. Horn, E. Holland-Moritz, M. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit and J. Flouquet: Phys. Rev. B23,3171 (1981)]. Rather, it suggests [44] a scheme of three doublets at OK, 36OK and 36OK (curve b), similar to what was recently deduced from the anisotropy of the static bulk susceptibility [Y. Onuki, T. Hirai, T. Komatsubara, S. Takayanagi, A. Sumiyama, A. Furukawa, Y. Oda and H. Nagano: see Ref. 61; S. Maekawa, S. Kashiba, S. Takahashi and M. Tachiki: these proceedings]

    Google Scholar 

  55. H.U. Degranges and K.D. Schotte: Phys. Lett. 91A, 240 (1982)

    Google Scholar 

  56. For a treatment of crystal-field split Ce3+ ions, see: N. Kawakami and A. Okiji: these proceedings

    Google Scholar 

  57. G. Sparn, W. Lieke, U. Gottwick, F. Steglich and N. Grewe: Ref. 17, p. 521

    Google Scholar 

  58. J.J.M. Franse, A. Menovsky, A. de Visser, C.D. Bredl, U. Gottwick, W. Lieke, H.M. Mayer, U. Rauchschwalbe, G. Sparn and F. Steglich: Z. Phys. B59, 15 (1985)

    Google Scholar 

  59. H.M. Mayer, U. Rauchschwalbe, C.D. Bredl, F. Steglich, H. Rietschel, H. Schmidt and H. Wiihl: Phys. Rev. B, submitted The specific heat of UBe13 at finite B-field has also been determined by H.R. Ott, H. Rudigier, E. Felder, Z. Fisk and J.L. Smith: preprint (1985)

    Google Scholar 

  60. D. Jaccard, J. Flouquet, P. Lejay and J.L. Tholence: Ref. 52, p. 3082

    Google Scholar 

  61. F. Steglich, U. Ahlheim, J.J.M. Franse, N. Grewe, D. Rainer and U. Rauchschwalbe: Proc. 5th Int. Conf. on Crystal Field Effects, ICCF5, Sendai (1985), T. Kasuya, ed.; J. Magn. Magn. Mat., in press

    Google Scholar 

  62. B. Lüthi, M. Herrmann, W. Assmus, H. Schmidt, H. Rietschel, H. Wühl, U. Gottwick, G. Sparn and F. Steglich: Z. Phys. B, in press

    Google Scholar 

  63. The T2-dependence in CS(T) of UPt3 was found to hold even to somewhat lower temperatures with a ys-value being about two times smaller compared to that in Fig. 6b; see: A. Sulpice, J. Gandit, J. Chaussy, J. Flouquet, D. Jaccard, P. Lejay and J.L. Tholence, to be published

    Google Scholar 

  64. J. Sticht and J. Kübler: Solid State Commun. 54, 389 (1985)

    Article  ADS  Google Scholar 

  65. J.W. Chen, S.E. Lambert, M.B. Maple, Z. Fisk, J.L. Smith, G.R. Stewart and J.O. Willis: Phys. Rev. B30, 1583 (1984)

    Google Scholar 

  66. A. de Visser, J.J.M. Franse, A. Menovsky, T.T.M. Palstra: J. Phys. F. 14, L191 (1984)

    Article  ADS  Google Scholar 

  67. T. Jarlborg, H.F. Braun and M. Peter: Z. Phys. В52, 295 (1983)

    Google Scholar 

  68. G,E. Volovik and L.P. Gor’kov: ZhETF, in press

    Google Scholar 

  69. K. Ueda and T.M. Rice: Phys. Rev. B31, 71 1 4 (1985)

    Google Scholar 

  70. H. Keiber, C. Geibel, B. Renker, H. Rietschel, H. Schmidt, H.Wiihl, G.R. Stewart: Phys. Rev. B30, 2542 (1984)

    Google Scholar 

  71. U. Rauchschwalbe, U. Ahlheim, F. Steglich, D. Rainer and J.J.M. Franse: Z. Phys. B, in press

    Google Scholar 

  72. M.B. Maple, J.W. Chen, S.E. Lambert, Z. Fisk, J.L. Smith, H.R. Ott, J.S. Brooks and M.J. Naughton: Phys. Rev. Lett. 54, 477 (1985)

    Article  ADS  Google Scholar 

  73. J.O. Willis, Z. Fisk, J.L. Smith, J.W. Chen, S.E. Lambert and M.B. Maple: see Ref. 48, p. 245

    Google Scholar 

  74. J.W. Chen, S.E. Lambert, M.B. Maple, M.J. Naughton, J.S. Brooks, Z. Fisk, J.L. Smith and H.R. Ott: see Ref. 52, p. 3076

    Google Scholar 

  75. E. Helfand and N.R. Werthamer: Phys. Rev. 147, 112 (1966) K. Maki: Phys. Rev. 148, 362 (1966)

    Article  Google Scholar 

  76. K. Scharnberg and R.A. Klemm: Phys. Rev. B22, 5233 (1980)

    Google Scholar 

  77. G. Eilenberger in: Ferienkurs Supraleitung, Kernforschungsanlage Jiilich (1977), unpublished

    Google Scholar 

  78. K. Scharnberg and R.A. Klemm: Phys. Rev. Lett. 54, 2445 (1985)

    Article  ADS  Google Scholar 

  79. J. Aarts: PhD Thesis, University of Amsterdam (1984), unpublished

    Google Scholar 

  80. A change of the crystal-field level scheme as discussed in [54] would result in peff close to 1.24uB, the effective moment of the cubic r7- doublet. This would lead to R(TC) = 1.4 and 1.3 for the single crystal and polycrystal, respectively. The corresponding b values of 2.8 (Fig. 11a), 3.0 (solid line in Fig. 11b) and 3.9 (dashed line in Fig. 11b) would still imply τso > τtr, where τso is spin-orbit scattering time and τtr the total transport scattering time

    Google Scholar 

  81. M. Tachiki, T. Koyama and S. Takahashi: these proceedings

    Google Scholar 

  82. R. Klemm and K. Scharnberg: Proc. Int. Conf. on Materials and Mechanisms in Superconductivity, Ames (1985), D.K. Finnemore, ed., in press

    Google Scholar 

  83. U. Poppe: Ref. 61

    Google Scholar 

  84. D. J. Bishop, C. M. Varma, B. Batlogg, E. Bucher, Z. Fisk and J. L. Smith: Phys. Rev. Lett. 53, 1009 (1984)

    Article  ADS  Google Scholar 

  85. C. M. Varma: private communication (1985)

    Google Scholar 

  86. Y. Kitaoka, K. Ueda, T. Kohara, K. Asayama, Y. Onuki and T. Komatsu- bara: Ref. 61

    Google Scholar 

  87. D. E. MacLaughlin, Cheng Tien, W.G. Clark, M.D. Lan, Z. Fisk, J.L. Smith and H.R. Ott: Phys. Rev. Lett. 53, 1833 (1984)

    Article  ADS  Google Scholar 

  88. U. Rauchschwalbe: unpublished results

    Google Scholar 

  89. J.P. Rodriguez: preprint (1985)

    Google Scholar 

  90. N. Grewe: Solid State Commun. 50, 19 (1984) see also, Y. Kuramoto: these proceedings

    Google Scholar 

  91. R. Mock and G. Guntherodt: J. Phys. С17, 5635 (1984)

    Google Scholar 

  92. F.J. Ohkawa: these proceedings

    Google Scholar 

  93. P.H. Frings, J.J.M. Franse, F.R. de Boer and A. Menovsky: Ref. 18, p. 240

    Google Scholar 

  94. G. Aeppli, E. Bucher and G. Shirane: preprint (1985) W.J.L. Buyers, J.K. Kjems and J.D. Garret: preprint (1985)

    Google Scholar 

  95. J.J.M. Franse, A. de Visser, A. Menovsky and P.H. Frings: Ref. 61

    Google Scholar 

  96. It should be noted that the lack of superconductivity even for x = 0.01 (A. de Visser, J.C.P. Klaasse, M. van Sprang, J.J.M. Franse and A. Menovsky: Proc. Int. Conf. on Magnetism, San Francisco (1985); to be published in J. Magn. Magn. Mat.) might exclusively be caused [15] by the Pd-derived reduction of the electronic mean free path. I wish to thank J.0. Willis for bringing this point to my attention

    Google Scholar 

  97. J.0. Willis, J.D. Thompson, Z. Fisk, A. de Visser, J.J.M. Franse and A. Menovsky: Phys. Rev. B31, 1654 (1985)

    Google Scholar 

  98. For a recent review, see: D. Vollhardt: Rev. Mod. Phys. 56, 99 (1984)

    Article  ADS  Google Scholar 

  99. T.M. Rice, K. Ueda, H.R. Ott and H. Rudigier: Phys. Rev. B31, 594 (1985)

    Google Scholar 

  100. W.F. Brinkman and T.M. Rice: Phys. Rev. B2, 4302 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steglich, F. (1985). Heavy-Fermion Superconductivity: Experimental Status Report. In: Kasuya, T., Saso, T. (eds) Theory of Heavy Fermions and Valence Fluctuations. Springer Series in Solid-State Sciences, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82618-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82618-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82620-7

  • Online ISBN: 978-3-642-82618-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics