Advertisement

Heavy-Fermion Superconductivity: Experimental Status Report

  • F. Steglich
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 62)

Abstract

New observations are reported for the heavy-fermion superconductors CeCu2Si2, UBe13 and UPt3. These results are discussed with respect to the following issues: (i) the competition between different cooperative phenomena in CeCu2Si2; (ii) the question whether the whole Fermi surface contributes to the superconducting transition in the three compounds; (iii) the nature of the superconducting order parameter. Taking into account more published data for these systems, we can delineate the present status of the field: CeCu2Si2 behaves as a singlet superconductor with possibly anisotropic Cooper pairing. UPt3 appears to possess an anisotropic order parameter, either of the singlet or triplet type. No definite conclusions can yet be drawn for Ube13, mainly because its superconducting properties are severely modified by field and temperature dependences of the normal- state parameters.

Keywords

Fermi Surface Heavy Fermion Critical Magnetic Field Superconducting Order Parameter Anisotropic Order Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For an early report, see: F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. F.anz and H. Schafer: J. Magn. Magn. Mat. 15–18, 889 (1980)Google Scholar
  2. 2.
    For a recent review, see: G.R. Stewart: Rev. Mod. Phys. 56, 755 (1984)CrossRefADSGoogle Scholar
  3. 3.
    R.J. Trainor, M.B. Brodsky and H.V. Culbert: Phys. Rev. Lett. 34, 1019 (1975)CrossRefADSGoogle Scholar
  4. 4.
    K. Andres, J.E. Graebner and H.R. Ott: Phys. Rev. Lett. 35, 1779 (1975)CrossRefADSGoogle Scholar
  5. 5.
    Y. Onuki, Y. Shimizu and T. Komatsubara: J. Phys. Soc. Jpn. 53, 1210 (1984) G. R. Stewart, Z. Fisk and M. Wire: Phys. Rev. B30, 482 (1984) H. R. Ott, H. Rudigier, Z. Fisk, J.O. Willis and G.R. Stewart: Solid State Commun. 53, 235 (1985)CrossRefADSGoogle Scholar
  6. 6.
    U. Rauchschwalbe, U. Gottwick, U. Ahlheim, H.M. Mayer and F. Steglich: J. Less Common Metals, in pressGoogle Scholar
  7. 7.
    R.J. Trainor, M.B. Brodsky, B.D. Dunlap and G.K. Shenoy, Phys. Rev. Lett. 37, 1511 (1976)CrossRefADSGoogle Scholar
  8. 8.
    B. Barbara, J.X. Boucherle, J.L. Buevoz, M.F. Rossignol and J. Schweizer: Solid State Commun. 24, 481 (1977) C.D. Bredl, F. Steglich and K.D. Schotte: Z. Phys. B29, 327 (1978)CrossRefGoogle Scholar
  9. 9.
    K. Winzer and W. Felsch: J. Phys. (Paris) 39, C6–832 (1978) T. Komatsubara, T. Suzuki, M. Kawakami, S. Kunii, T. Fujita, Y. Ishika- wa, A. Takase, K. Kojima, M. Suzuki, Y. Aoki, K. Takegahara and T. Kasuya: Ref. 1, p. 963Google Scholar
  10. 10.
    H.R. Ott, H. Rudigier, P. Delsing and Z. Fisk: Phys. Rev. Lett. 52, 1551 (1984)CrossRefADSGoogle Scholar
  11. 11.
    Z. Fisk, G.R. Stewart, J.O. Willis, H.R. Ott and F. Hulliger: Phys. Rev. B30, 6360 (1984)CrossRefADSGoogle Scholar
  12. 12.
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke,D. Meschede, W. Franz and H. SchSfer: Phys. Rev. Lett. 43, 1892 (1979)CrossRefADSGoogle Scholar
  13. 13.
    U. Rauchschwalbe, W. Lieke, C.D. Bredl, F. Steglich, J. Aarts, K.M. Martini and A.C. Mota: Phys. Rev. Lett. 49, 1448 (1982)CrossRefADSGoogle Scholar
  14. 14.
    H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith: Phys. Rev. Lett. 50, 1595 (1983)CrossRefADSGoogle Scholar
  15. 15.
    G.R. Stewart, Z. Fisk, J.O. Willis and J.L. Smith: Phys. Rev. Lett. 52, 679 (1984)CrossRefADSGoogle Scholar
  16. 16.
    B. Batlogg, J.P. Remeika, A.S. Cooper and Z. Fisk: J. Appl. Phys. 55, 2001 (1984) B. Batlogg, J.P. Remeika, A.S. Cooper, G.R. Stewart, Z. Fisk and J.O. Willis: J. Magn. Magn. Mat. 47amp; 48, 42 (1985)Google Scholar
  17. 17.
    U. Rauchschwalbe, W. Baus, S. Horn, H. Spille, F. Steglich, F.R. de Boer, J. Aarts, W. Assmus and M. Herrmann: J. Magn. Magn. Mat. 47& 48, 33 (1985)CrossRefADSGoogle Scholar
  18. 18.
    C.D. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann and J. Aarts: J. Magn. Magn. Mat. 31–34 373 (1983)CrossRefADSGoogle Scholar
  19. 19.
    C.D. Bredl, S. Horn, F. Steglich, B. Lathi and R.M. Martin: Phys. Rev. Lett. 52, 1982 (1984)CrossRefADSGoogle Scholar
  20. 20.
    H. Razafimandimby, P. Fulde and J. Keller: Z. Phys. B54, 111 (1984) N. d’Ambrumenil and P. Fulde: Ref. 17, p. 1CrossRefADSGoogle Scholar
  21. 21.
    C.M. Varma: Bull. Am. Phys. Soc. 29, 404 (1984); Comments in Solid State Physics, in pressGoogle Scholar
  22. 22.
    H.R. Ott, H. Rudigier, T.M. Rice, K. Ueda, Z. Fisk and J.L. Smith: Phys. Rev. Lett. 52, 1915 (1984)CrossRefADSGoogle Scholar
  23. 23.
    P.W. Anderson: Phys. Rev. B30, 4000 (1984)Google Scholar
  24. 24.
    O. Vails and Z. Tesanovic: Phys. Rev. Lett. 53, 477 (1984)CrossRefGoogle Scholar
  25. 25.
    M. Tachiki and S. Maekawa: Phys. Rev. B29, 2497 (1984)CrossRefADSGoogle Scholar
  26. 26.
    N. Grewe, Z. Phys. B56, 111 (1984)CrossRefADSGoogle Scholar
  27. 27.
    K. Miyake, T. Matsuura, H. Jichu and J. Nagaoka: Progr. Theor. Phys. 72, 1063 (1984)CrossRefADSGoogle Scholar
  28. 28.
    F.J. Ohkawa and H. Fukuyama: J. Phys. Soc. Jpn. 53, 4344 (1984)CrossRefADSGoogle Scholar
  29. 29.
    A.W. Overhauser and J. Appel: Phys. Rev. B31 193 (1985)Google Scholar
  30. 30.
    T. Oguchi, A.J. Freeman and G.W. Crabtree: preprint (1985)Google Scholar
  31. 31.
    G.W. Hull, J.H. Wernick, Т.Н. Geballe, J.V. Waszcak and J.E. Bernardi- ni: Phys. Rev. B24, 6715 (1981)Google Scholar
  32. 32.
    W. Lieke, U. Rauchschwalbe, C.D. Bredl, F. Steglich, J. Aarts and F.R. de Boer: J. Appl. Phys. 53, 2111 (1982)CrossRefADSGoogle Scholar
  33. 33.
    F.G. Aliev, N.B. Brandt, V.V. Moshchalkov and S.M. Chudinov: Solid State Commun. 45, 215 (1983)CrossRefADSGoogle Scholar
  34. 34.
    G.R. Stewart, Z. Fisk and J.O. Willis: Phys. Rev. B28, 172 (1983)CrossRefADSGoogle Scholar
  35. 35.
    Z. Kletowski: J. Less Common Metals 95, 127 (1983)CrossRefGoogle Scholar
  36. 36.
    F.G. Aliev, N.B. Brandt, V.V. Moshchalkov and S.M. Chudinov: J. Low Temp. Phys. 57, 61 (1984)CrossRefADSGoogle Scholar
  37. 37.
    Here, a bulk modulus В = 1.1 • 103 kbar for CeCu2Si2 was used, see: I.L. Spain, F. Steglich, U. Rauchschwalbe and H.D. Hochheimer: Proc. Xth AIRAPT Conference, Amsterdam (1985); Physica B, in pressGoogle Scholar
  38. 38.
    W. Assmus, M. Herrmann, U. Rauchschwalbe, S.Riegel, W. Lieke, H. S.il-le, S. Horn, G. Weber, F. Steglich and G. Cordier: Phys. Rev. Lett. 52, 469 (1984)ADSGoogle Scholar
  39. 39.
    H. Spille, U. Rauchschwalbe and F. Steglich, Helv. Phys. Acta 56, 165 (1983)Google Scholar
  40. 40.
    S. Doniach: Physica 91B, 231 (1977) M. Lavagna, C. Lacroix and M. Cyrot: Phys. Lett. 90 A, 210 (1982)Google Scholar
  41. 41.
    A more complex Tc(p) dependence for p ≳ 20 kbar was recently reported by B. Bellarbi, A. Benoit, D. Jaccard, J.M. Mignot and H.F. Braun: Phys. Rev. B30, 1182 (1984)Google Scholar
  42. 42.
    M. Ishikawa, H.F. Braun and J.L. Jorda: Phys. Rev. B27, 3092 (1983)Google Scholar
  43. 43.
    W. Baus: Diploma Thesis, TH Darmstadt (1985), unpublishedGoogle Scholar
  44. 44.
    C.D. Bredl, W. Lieke, R. Schefzyk, M. Lang, U. Rauchschwalbe, F. Steglich, S. Riegel, R. Felten, G. Weber, J. Klaasse, J. Aarts and F.R. de Boer: Ref. 17, p. 30Google Scholar
  45. 45.
    The χ(T)-reSults on “stoichiometric” single crystals grown by other techniques are similar to those in Fig. 2b, see Ref. 16 and Y. Onuki, Y. Furukawa and T. Komatsubara: J. Phys. Soc. Jpn. 53, 2197 (1984). One should also note that such crystals show a large magnetoresistivity, which is almost absent in Cu-excess crystals [17]Google Scholar
  46. 46.
    ρ0-values for superconducting CeCu2Si2 single-crystal and polycrystal- line samples range between 3.5 µΩcm [13] and 60 µΩcm [38], while for non-super conducting ones ρ0 ≳ 100 liftcm [38]Google Scholar
  47. 47.
    J. Flouquet, J.C. Lasjaunias, J. Peyrard and M. Ribault: Ref. 32, p. 2127Google Scholar
  48. 48.
    C.D. Bredl, N. Grewe, F. Steglich and E. Umlauf: Proc. Int. Conf. on Low Temperature Physics, LT 17, U. Eckern, A. Schmid, W. Weber, H. Wühl, eds., North-Holland, Amsterdam (1984),p. 327Google Scholar
  49. 49.
    F. Steglich, C.D. Bredl, W. Lieke, U. Rauchschwalbe and G. Sparn: Physica 126В, 82 (1984)Google Scholar
  50. 50.
    D. Jaccard and J. Flouquet: Ref. 17, p. 45Google Scholar
  51. 51.
    T. Fujita, T. Satoh, Y. Onuki and T. Komatsubara: Ref. 17, p. 66Google Scholar
  52. 52.
    F. Steglich, U. Rauchschwalbe, U. Gottwick, H.M. Mayer, G. Sparn, N. Grewe, U. Poppe and J.J.M. Franse: J. Appl. Phys. 57, 3054 (1985)CrossRefADSGoogle Scholar
  53. 53.
    R.M. Martin: Phys. Rev. Lett. 48, 362 (1982)CrossRefADSGoogle Scholar
  54. 54.
    The Schottky-type anomaly at elevated temperatures is not compatible with the crystal-field level scheme of three Kramers doublets at OK, 140K and 36ОК (curve a) as derived from neutron-scattering results [S. Horn, E. Holland-Moritz, M. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit and J. Flouquet: Phys. Rev. B23,3171 (1981)]. Rather, it suggests [44] a scheme of three doublets at OK, 36OK and 36OK (curve b), similar to what was recently deduced from the anisotropy of the static bulk susceptibility [Y. Onuki, T. Hirai, T. Komatsubara, S. Takayanagi, A. Sumiyama, A. Furukawa, Y. Oda and H. Nagano: see Ref. 61; S. Maekawa, S. Kashiba, S. Takahashi and M. Tachiki: these proceedings]Google Scholar
  55. 55.
    H.U. Degranges and K.D. Schotte: Phys. Lett. 91A, 240 (1982)Google Scholar
  56. 56.
    For a treatment of crystal-field split Ce3+ ions, see: N. Kawakami and A. Okiji: these proceedingsGoogle Scholar
  57. 57.
    G. Sparn, W. Lieke, U. Gottwick, F. Steglich and N. Grewe: Ref. 17, p. 521Google Scholar
  58. 58.
    J.J.M. Franse, A. Menovsky, A. de Visser, C.D. Bredl, U. Gottwick, W. Lieke, H.M. Mayer, U. Rauchschwalbe, G. Sparn and F. Steglich: Z. Phys. B59, 15 (1985)Google Scholar
  59. 59.
    H.M. Mayer, U. Rauchschwalbe, C.D. Bredl, F. Steglich, H. Rietschel, H. Schmidt and H. Wiihl: Phys. Rev. B, submitted The specific heat of UBe13 at finite B-field has also been determined by H.R. Ott, H. Rudigier, E. Felder, Z. Fisk and J.L. Smith: preprint (1985)Google Scholar
  60. 60.
    D. Jaccard, J. Flouquet, P. Lejay and J.L. Tholence: Ref. 52, p. 3082Google Scholar
  61. 61.
    F. Steglich, U. Ahlheim, J.J.M. Franse, N. Grewe, D. Rainer and U. Rauchschwalbe: Proc. 5th Int. Conf. on Crystal Field Effects, ICCF5, Sendai (1985), T. Kasuya, ed.; J. Magn. Magn. Mat., in pressGoogle Scholar
  62. 62.
    B. Lüthi, M. Herrmann, W. Assmus, H. Schmidt, H. Rietschel, H. Wühl, U. Gottwick, G. Sparn and F. Steglich: Z. Phys. B, in pressGoogle Scholar
  63. 63.
    The T2-dependence in CS(T) of UPt3 was found to hold even to somewhat lower temperatures with a ys-value being about two times smaller compared to that in Fig. 6b; see: A. Sulpice, J. Gandit, J. Chaussy, J. Flouquet, D. Jaccard, P. Lejay and J.L. Tholence, to be publishedGoogle Scholar
  64. 64.
    J. Sticht and J. Kübler: Solid State Commun. 54, 389 (1985)CrossRefADSGoogle Scholar
  65. 65.
    J.W. Chen, S.E. Lambert, M.B. Maple, Z. Fisk, J.L. Smith, G.R. Stewart and J.O. Willis: Phys. Rev. B30, 1583 (1984)Google Scholar
  66. 66.
    A. de Visser, J.J.M. Franse, A. Menovsky, T.T.M. Palstra: J. Phys. F. 14, L191 (1984)CrossRefADSGoogle Scholar
  67. 67.
    T. Jarlborg, H.F. Braun and M. Peter: Z. Phys. В52, 295 (1983)Google Scholar
  68. 68.
    G,E. Volovik and L.P. Gor’kov: ZhETF, in pressGoogle Scholar
  69. 69.
    K. Ueda and T.M. Rice: Phys. Rev. B31, 71 1 4 (1985)Google Scholar
  70. 7C.
    H. Keiber, C. Geibel, B. Renker, H. Rietschel, H. Schmidt, H.Wiihl, G.R. Stewart: Phys. Rev. B30, 2542 (1984)Google Scholar
  71. 71.
    U. Rauchschwalbe, U. Ahlheim, F. Steglich, D. Rainer and J.J.M. Franse: Z. Phys. B, in pressGoogle Scholar
  72. 72.
    M.B. Maple, J.W. Chen, S.E. Lambert, Z. Fisk, J.L. Smith, H.R. Ott, J.S. Brooks and M.J. Naughton: Phys. Rev. Lett. 54, 477 (1985)CrossRefADSGoogle Scholar
  73. 73.
    J.O. Willis, Z. Fisk, J.L. Smith, J.W. Chen, S.E. Lambert and M.B. Maple: see Ref. 48, p. 245Google Scholar
  74. 74.
    J.W. Chen, S.E. Lambert, M.B. Maple, M.J. Naughton, J.S. Brooks, Z. Fisk, J.L. Smith and H.R. Ott: see Ref. 52, p. 3076Google Scholar
  75. 75.
    E. Helfand and N.R. Werthamer: Phys. Rev. 147, 112 (1966) K. Maki: Phys. Rev. 148, 362 (1966)CrossRefGoogle Scholar
  76. 76.
    K. Scharnberg and R.A. Klemm: Phys. Rev. B22, 5233 (1980)Google Scholar
  77. 77.
    G. Eilenberger in: Ferienkurs Supraleitung, Kernforschungsanlage Jiilich (1977), unpublishedGoogle Scholar
  78. 78.
    K. Scharnberg and R.A. Klemm: Phys. Rev. Lett. 54, 2445 (1985)CrossRefADSGoogle Scholar
  79. 79.
    J. Aarts: PhD Thesis, University of Amsterdam (1984), unpublishedGoogle Scholar
  80. 80.
    A change of the crystal-field level scheme as discussed in [54] would result in peff close to 1.24uB, the effective moment of the cubic r7- doublet. This would lead to R(TC) = 1.4 and 1.3 for the single crystal and polycrystal, respectively. The corresponding b values of 2.8 (Fig. 11a), 3.0 (solid line in Fig. 11b) and 3.9 (dashed line in Fig. 11b) would still imply τso > τtr, where τso is spin-orbit scattering time and τtr the total transport scattering timeGoogle Scholar
  81. 81.
    M. Tachiki, T. Koyama and S. Takahashi: these proceedingsGoogle Scholar
  82. 82.
    R. Klemm and K. Scharnberg: Proc. Int. Conf. on Materials and Mechanisms in Superconductivity, Ames (1985), D.K. Finnemore, ed., in pressGoogle Scholar
  83. 83.
    U. Poppe: Ref. 61Google Scholar
  84. 84.
    D. J. Bishop, C. M. Varma, B. Batlogg, E. Bucher, Z. Fisk and J. L. Smith: Phys. Rev. Lett. 53, 1009 (1984)CrossRefADSGoogle Scholar
  85. 85.
    C. M. Varma: private communication (1985)Google Scholar
  86. 86.
    Y. Kitaoka, K. Ueda, T. Kohara, K. Asayama, Y. Onuki and T. Komatsu- bara: Ref. 61Google Scholar
  87. 87.
    D. E. MacLaughlin, Cheng Tien, W.G. Clark, M.D. Lan, Z. Fisk, J.L. Smith and H.R. Ott: Phys. Rev. Lett. 53, 1833 (1984)CrossRefADSGoogle Scholar
  88. 88.
    U. Rauchschwalbe: unpublished resultsGoogle Scholar
  89. 89.
    J.P. Rodriguez: preprint (1985)Google Scholar
  90. 90.
    N. Grewe: Solid State Commun. 50, 19 (1984) see also, Y. Kuramoto: these proceedingsGoogle Scholar
  91. 91.
    R. Mock and G. Guntherodt: J. Phys. С17, 5635 (1984)Google Scholar
  92. 92.
    F.J. Ohkawa: these proceedingsGoogle Scholar
  93. 93.
    P.H. Frings, J.J.M. Franse, F.R. de Boer and A. Menovsky: Ref. 18, p. 240Google Scholar
  94. 94.
    G. Aeppli, E. Bucher and G. Shirane: preprint (1985) W.J.L. Buyers, J.K. Kjems and J.D. Garret: preprint (1985)Google Scholar
  95. 95.
    J.J.M. Franse, A. de Visser, A. Menovsky and P.H. Frings: Ref. 61Google Scholar
  96. 96.
    It should be noted that the lack of superconductivity even for x = 0.01 (A. de Visser, J.C.P. Klaasse, M. van Sprang, J.J.M. Franse and A. Menovsky: Proc. Int. Conf. on Magnetism, San Francisco (1985); to be published in J. Magn. Magn. Mat.) might exclusively be caused [15] by the Pd-derived reduction of the electronic mean free path. I wish to thank J.0. Willis for bringing this point to my attentionGoogle Scholar
  97. 97.
    J.0. Willis, J.D. Thompson, Z. Fisk, A. de Visser, J.J.M. Franse and A. Menovsky: Phys. Rev. B31, 1654 (1985)Google Scholar
  98. 98.
    For a recent review, see: D. Vollhardt: Rev. Mod. Phys. 56, 99 (1984)CrossRefADSGoogle Scholar
  99. 99.
    T.M. Rice, K. Ueda, H.R. Ott and H. Rudigier: Phys. Rev. B31, 594 (1985)Google Scholar
  100. 100.
    W.F. Brinkman and T.M. Rice: Phys. Rev. B2, 4302 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • F. Steglich
    • 1
  1. 1.Institut für FestkörperphysikTechnische Hochschule DarmstadtDarmstadtFed. Rep. of Germany

Personalised recommendations