Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 62))

Abstract

The Fermi liquid theory of Anderson lattices is developed to describe coherent states of Kondo lattices at low temperatures. The origin of heavy electrons is the spin fluctuation nearly confined within each single f site; the situation is similar to that in dilute Kondo alloys. On the basis of the Fermi liquid theory, one can conclude that an attractive interaction between adjacent f electrons is indispensable to realize heavy-electron superconductivity. Consequently the attractive interaction should be of finite range, so that even s-symmetry Cooper pairs can be anisotropic; the energy gap, for example, can vanish along lines on the Fermi surface. It is also discussed that phonon-mediated attractive interaction between adjacent f electrons depends on the lattice structure. For example, it is expected in CsCℓ type lattices, while it should be absent in NaCℓ type lattices. Typical heavy-electron superconductors such as CeCu2Si2 and UBe13 can be actually regarded as a kind of CsCℓ type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Mescheded, W. Franz and H. Schafer, Phys. Rev. Lett. 43 (1979) 1892.

    Article  Google Scholar 

  2. F. Steglich, C. D. Bredl, W. Lieke, U. Rauchschwalbe and G. Sparn, Physica 126 B+C (1984) 82.

    Article  Google Scholar 

  3. H. R. Ott, H. Rudigier, Z. Fisk and J. L. Smith, Phy. Rev. Lett. 50 (1983) 1595.

    Article  ADS  Google Scholar 

  4. G. R. Stewart, Z. Fisk, J. O. Willis and J. L. Smith, Phy. Rev. Lett. 52 (1984) 679.

    Article  ADS  Google Scholar 

  5. H. R. Ott, H. Rudigier, T. M. Rice, K. Ueda, Z. Fisk and J. L. Smith, Phys. Rev. Lett. 52 (1984) 1915.

    Article  ADS  Google Scholar 

  6. Y. Kitaoka, K. Ueda, T. Kohara and K. Asayama, Solid State Commun. 51 (1984 ) 461.

    Article  ADS  Google Scholar 

  7. D.E. MacLaughlin, Cheng Tien, W. G. Clark, M. D. Lan, Z. Fisk, J. L. Smith and H. R. Ott, Phys. Rev. Lett. 53 (1984) 1833.

    Article  ADS  Google Scholar 

  8. D. J. Bishop, C. M. Varma, B. Batlogg, E. Bucher, Z. Fisk and J. L. Smith, Phys. Rev. Lett. 53 (1984) 1009.

    Article  ADS  Google Scholar 

  9. C. M. Varma, Bull. American Phys. Soc. 29 (1984) 404.

    Google Scholar 

  10. P. W. Anderson, Phys. Rev. B30 (1984) 1549.

    ADS  Google Scholar 

  11. N. C. Baezinger and R. E. Rundle, Acta. Cryst. 2 (1949) 258.

    Article  Google Scholar 

  12. J. M. Luttinger and J. C. Ward, Phys. Rev. 118 (1960) 1417.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. J. M. Luttinger, Phys. Rev. 119 (1960) 1153.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. R. M. Martin, Phys. Rev. Lett. 48 (1982) 362.

    Article  ADS  Google Scholar 

  15. F. J. Ohkawa, J. Phys. Soc. Jpn. 53 (1984) 1389.

    Article  ADS  Google Scholar 

  16. F. J. Ohkawa, J. Phys. Soc. Jpn. 52 (1983) 3886.

    Article  ADS  Google Scholar 

  17. F. J. Ohkawa, J. Phys. Soc. Jpn. 53 (1984 ) 2697.

    Article  ADS  Google Scholar 

  18. K. Yosida, Phys. Rev. 147 (1966) 223.

    Article  ADS  Google Scholar 

  19. S. Inagaki, Prog. Theor. Phys. 62 (1979) 1441, and Prog. Theor. Phys. Suppl. 69 (1980) 232.

    Article  Google Scholar 

  20. F. D. M. Haldane, Phys. Rev. Lett. 40 (1978) 416.

    Article  Google Scholar 

  21. K. Yosida and A. Sakurai, Prog. Theor. Phys. 61 (1979) 1597, and J. Magn. amp; Magn. Mater. 15–18 (1980) 949.

    Article  ADS  Google Scholar 

  22. K. Yamada, K. Yosida and K. Hanzawa, Prog. Theor. Phys. 71 (1984) 450.

    Article  ADS  Google Scholar 

  23. A. Yoshimori and H. Kasai, J. Magn. amp; Magn. Mater. 31-34 (1983) 475. They assumed finite transfer integral between adjacent / orbits in order to make systems metallic. Therefore their model is not an Anderson lattice in the sense.used in the present paper.

    Google Scholar 

  24. F. J. Ohkawa, J. Phys. Soc. Jpn. 53 (1984) 1828.

    Article  ADS  Google Scholar 

  25. K. Yamada, Prog. Theor. Phys. 53 (1975 ) 970, ibid. 54 (1975) 316, and ibid. 55 (1976) 1345.

    Google Scholar 

  26. K. Yosida and K. Yamada: Prog. Theor. Phys. 53 (1975) 1286.

    Article  ADS  Google Scholar 

  27. P. Morel and P. W. Anderson, Phys. Rev. 125 (1962) 1263.

    Article  ADS  Google Scholar 

  28. F. J. Ohkawa, J. Phys. Soc. Jpn. 53 (1984) 3577.

    Article  Google Scholar 

  29. F. J. Ohkawa, J. Phys. Soc. Jpn. 53 (1984) 3568.

    Article  Google Scholar 

  30. B. S. Chandrasekhar and J. K. Hulm: J. Phys. Chem. Solid 7 (1958) 259.

    Article  ADS  Google Scholar 

  31. M. Tachiki and S. Maekawa, Phys. Rev. B29 (1984) 2497.

    Google Scholar 

  32. H. Razafimandimby, P. Fulde and J. Keller, Z. Phys. B54 (1984) 111.

    Article  Google Scholar 

  33. T. Matsuura, K. Miyake, H. Jichu and Y. Kuroda, Prog. Theor. Phys. 72 (1984) 402.

    Article  ADS  Google Scholar 

  34. K. Miyake, T. Matsuura and H. Jichu, Prog. Theor. Phys. 72 (1984) 652.

    Article  ADS  Google Scholar 

  35. F. J. Ohkawa and H. Fukuyama, J. Phys. Soc. Jpn. 53 (1984) 4344.

    Article  ADS  Google Scholar 

  36. M. D. Whitmore and J. P. Carbotte, Phys. Rev. B23 (1981) 5782.

    Article  ADS  Google Scholar 

  37. V. L. Pokrovskii and M. S. Ryvkin, Sov. Phys.-JETP 16 (1963) 67.

    ADS  Google Scholar 

  38. T. Tsuneto, Prog. Theor. Phys. 28 (1962) 857.

    Article  ADS  Google Scholar 

  39. D. Markowitz and L. P. Kadanoff, Phys. Rev. 131 (1963) 563.

    Article  ADS  Google Scholar 

  40. A. A. Abrikosov and L. P. Gorkov: Soviet Physics JETP 12 (1961) 1243.

    Google Scholar 

  41. P. W. Anderson, J. Phys. Chem. Solids 11 (1959) 26.

    Article  ADS  Google Scholar 

  42. P. W. Anderson and W. F. Brinkman: The Helium Liquids, Proc. 15th Scottish Universities Summer School in Physics, 1974, ed. J. G. M. Armitage and I. E. Farquhar ( Academic Press, New York 1975 ) p. 315.

    Google Scholar 

  43. K. Ueda and Т. M. Rice: preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohkawa, F.J. (1985). Superconductivity in Kondo Lattices. In: Kasuya, T., Saso, T. (eds) Theory of Heavy Fermions and Valence Fluctuations. Springer Series in Solid-State Sciences, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82618-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82618-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82620-7

  • Online ISBN: 978-3-642-82618-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics