Z−1 Expansion in Dense Kondo Systems

  • H. Fukuyama
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 62)

Abstract

It is emphasized that the coherent state of dense Kondo systems can be described conveniently by noting the existence of the small expansion parameter Z−1, Z being the mass renormalization factor. This expansion naturally leads to the existence of the heavy quasi-particles at the fermi energy mixing with conduction electrons, but with the mixing matrix element renormalized by Z−1/2 . Such heavy quasi-particles form a band by themselves even without the direct mixing with conduction electrons and have residual repulsive interactions, whose coupling strength is of the order one. Based on this argument the effect of impurity scattering is also examined and it is indicated that the scattering rate due to potential fluctuations is reduced by Z−1 whereas that due to modifications of mixing matrix elements is not. Hence it is concluded that the superconductivity is more easily influenced by alloying which affects the latter.

Keywords

Anisotropy Attenuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent review on experimental results see G.R. Stewart, Rev. Mod. Phys: 56, 755 (1984).CrossRefADSGoogle Scholar
  2. 2.
    See papers in Valence Fluctuations in Solids ed. L.M. Falicov, W. Hanke and M.P. Maple (North Holland, 1981).Google Scholar
  3. 3.
    P. Nozieres: J. Phys. (Paris) 39, 1117 (1978).CrossRefGoogle Scholar
  4. 4.
    R.M. Martin: Phys. Rev. Lett. 48, 362 (1982).CrossRefADSGoogle Scholar
  5. 5.
    F.J. Ohkawa: J. Phys. Soc. Jpn. 53, 1389 (1984); 53, 1828 (1984).Google Scholar
  6. 6.
    A. Yoshimori and H. Kasai: J. Magn. Magn. Mater. 31–34, 475 (1983).CrossRefADSGoogle Scholar
  7. 7.
    K. Yosida and K. Yamada: Prog. Theor. Phys. 53, 1286 (1975).CrossRefADSGoogle Scholar
  8. 8.
    K. Yamada: Prog. Theor. Phys. 53, 970 (1975); 54, 316 (1975); 55, 1345 (1976).CrossRefGoogle Scholar
  9. 9.
    H. Jichu, T. Matsuura and Y. Kuroda: Prog. Theor. Phys. 72, 366 (1984).CrossRefADSGoogle Scholar
  10. 10.
    H. Jichu, T. Matsuura and Y. Kuroda: ICCF5 (Sendai, 1985) to appear in J. Magn. Magn. Mater.Google Scholar
  11. 11.
    H. Razafimandimby, P. Fulde and J. Keller: Z. Phys. B54, 111 (1984).Google Scholar
  12. 12.
    C.M. Varma: Bull. Am. Phys. Soc. 29, 404 (1984).Google Scholar
  13. 13.
    P.W. Anderson: Phys. Rev. В30, 1549 (1984).Google Scholar
  14. 14.
    H.R. Ott, H. Rudigier, T.M. Rice, K. Ueda, Z. Fisk and J.L. Smith: Phys. Rev. Lett. 52, 1915 (1984).CrossRefADSGoogle Scholar
  15. 15.
    M. Tachiki and S. Maekawa: Phys. Rev. B29, 2497 (1984).Google Scholar
  16. 16.
    T. Matsuura, K. Miyake, H. Jichu and Y. Kuroda: Prog. Theor. Phys. 72, 402 (1984).CrossRefADSGoogle Scholar
  17. 17.
    K. Miyake, T. Matsuura, H. Jichu and Y. Nagaoka: Prog. Theor. Phys. 72, 1063 (1984).CrossRefADSGoogle Scholar
  18. 18.
    K. Miyake, this volume.Google Scholar
  19. 19.
    J.W. Allen and R. Martin: Phys. Rev. Lett. 49, 1106 (1982); J. Magn. Magn. Mater. 31–34, 473 (1983).Google Scholar
  20. 20.
    F.J. Ohkawa and H. Fukuyama: J. Phys. Soc. Jpn. 53, 4344 (1984).CrossRefADSGoogle Scholar
  21. 21.
    H.R. Ott, H. Rudigier, P. Delsing and Z. Fisk: Phys. Rev. Lett. 52, 1551 (1984).CrossRefADSGoogle Scholar
  22. 22.
    D.J. Bishop, C.M. Varma, B. Batlogg, E. Bucher, Z. Fisk and J.L. Smith: Phys. Rev. Lett. 53, 1009 (1984).CrossRefADSGoogle Scholar
  23. 23.
    For review, e.g. Anderson Localization ed. Y. Nagaoka and H. Fukuyama (Springer Verlag, 198ZJ.Google Scholar
  24. 24.
    F. Steglich, private communications.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Fukuyama
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoMinato-ku, Tokyo 106Japan

Personalised recommendations