Advertisement

Modelling Mixed Valence Systems Using the Generalized Anderson Model

  • P. Coleman
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 62)

Abstract

With the aid of a generalized version of the infinite U Anderson model the strong coupling properties of mixed valence systems may be modelled by means of an expansion in 1/degeneracy about a broken symmetry state. The technique leads to new conceptual picture where the strong coupling divergence of the Kondo coupling constant is a direct consequence of Goldstone mode fluctuations about the broken symmetry state. The crossover to strong coupling is a vestage of the broken symmetry phase transition and we are able to relate the interactions and the charge and spin correlations of the heavy Fermi liquid to the fluctuations about this broken symmetry state.

Keywords

Break Symmetry Fermi Liquid Anderson Model Mixed Valence Goldstone Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson and G. Yuval, P.R.L. 23, 89 (1969).CrossRefGoogle Scholar
  2. 2.
    K. G. Wilson, Rev. Mod. Phys. 47, 773 (1970).CrossRefADSGoogle Scholar
  3. 3.
    P. Nozieres, J. Low Temp Phys. 17, 31 (1974).CrossRefADSGoogle Scholar
  4. 4.
    P. W. Anderson, in Valence Fluctuations in Solids, editors L. M. Falikov, W. Hanke and B. Maple ( North Holland, Amsterdam, 1983 ).Google Scholar
  5. 5.
    S. Chakravarty, Proc. March Meeting American Physical Society, (1982).Google Scholar
  6. 6.
    D. Newns and N. Read, J. Phys C. 16, 3273 (1983); J. Phys C. 29 L1055 (1983).CrossRefADSGoogle Scholar
  7. 7.
    P. Nozieres and C. De Dominicis, Phys Rev 178 1097 (1968).CrossRefADSGoogle Scholar
  8. 8.
    P. W. Anderson, Phys Rev 86, 894 (1952).ADSGoogle Scholar
  9. 9.
    E. Witten, Nucl. Phys. B., 145, 110 (1978).CrossRefADSGoogle Scholar
  10. 10.
    N. Andrei and P. Coleman, Institute for Theoretical Physics Preprint, UCSB, CA 93106 (1985).Google Scholar
  11. 11.
    P. Coleman, Phys. Rev. B., 29 3035 (1985); Proc. 5th Int. Conf. on Valence Fluctuations, J. Mag. Mat., 1984.CrossRefADSGoogle Scholar
  12. 12.
    A. Ruckenstein, private communication.Google Scholar
  13. 13.
    U. Shiba, Prog. Theor. Phys. 54 967 (1975).CrossRefADSGoogle Scholar
  14. 14.
    P. Coleman, Institute for Theoretical Physics Preprint, UCSB, CA 93106 (1985), to be published.Google Scholar
  15. 15.
    H. Keiter and J. Kimball, Int. J. Magn. 1 233 (1971).Google Scholar
  16. 16.
    Y. Kuramoto, Zeit Phys. B. 53 37 (1983).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • P. Coleman
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations