Advertisement

GC-MS Methods for Cyclic Nucleotides in Higher Plants and for Free High Unsaturated Fatty Acids in Oils

  • B. Janistyn
Part of the Modern Methods of Plant Analysis book series (MOLMETHPLANT, volume 3)

Abstract

Vegetable substances can be categorized in a multitude of chemical compound classes. Within each class they vary considerably in concentration.

Keywords

Arachidonic Acid Cyclic Nucleotide Maize Seedling Reference Spot Methyl Arachidonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlin J, Barz W, Harms H, Haider K (1971) Degradation of phenolic compounds in plant cell cultures. FEBS-Lett 16:141–146PubMedCrossRefGoogle Scholar
  2. Bild GS, Bhat SG, Ramadoss CS, Axelrod B (1978) Biosynthesis of a prostaglandin by a plant enzyme. J Biol Chem 253:21–23PubMedGoogle Scholar
  3. Black M, Bewley JD, Fountain D (1974) Lettuce seed germination and cytokinins• Their entry and formation. Planta 117:145–152CrossRefGoogle Scholar
  4. The dosage response curve for abscisic acid has also been published in this paper Brown EG, Newton RP (1981) Cyclic AMP and higher plants (review). Phytochemistry 20:2453–2463CrossRefGoogle Scholar
  5. Budde WL, Eichelberger JW (1979) Organic analysis using gas chromatography-mass spectrometry. Ann Arbor Science Publishers. P.O. Box 1425:48–106Google Scholar
  6. Catalano N (1967) Glyceride composition of olive oil. I. Oils from various areas. Indian Agric 5:529–540Google Scholar
  7. Cleland R (1972) The dosage-response curve for auxin-induced cell elongation:a reevaluation. Planta 104:1–9CrossRefGoogle Scholar
  8. Dziedzianowicz-Wierzbicka W, Krauze St (1970) Determination of the composition of fatty acids in beech (Fagus silvatica) seed oil. Rocz Panstw Zakl Hig 21:653–664PubMedGoogle Scholar
  9. Galston AW (1961) The life of green plants. Engleword Cliffs:Prentice-HallGoogle Scholar
  10. Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem 46:823–896CrossRefGoogle Scholar
  11. Greengard P, Costa E (1970) Role of cyclic AMP in cell function. Raven, New YorkGoogle Scholar
  12. Gregson RP, Marwood JF, Quinn RJ (1979) The occurrence of prostaglandins PGE2 and PGF in a plant — the red alga Gracilaria lichenoides. Tetrahedron Lett 46:4505–4506CrossRefGoogle Scholar
  13. Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD Jr, Steffens GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant-growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217CrossRefGoogle Scholar
  14. Hefendehl FW (1962) Zusammensetzung des ätherischen Ols von Mentha piperita im Verlauf der Ontogenese and Versuche zur Beeinflussung der Ölkomposition. Planta Med 241–266Google Scholar
  15. Hitchcock C, Nichols BW (1971) Plant lipids biochemistry. Academic, New YorkGoogle Scholar
  16. Janistyn B (1982a) Gas chromatographie-mass spectrometric identification and quantification of arachidonic acid in wheat-germ oil. Planta 155:342–344Google Scholar
  17. Janistyn B (1982b) Gas chromatographic-mass spectroscopic identification of prostaglandin Fl in flowering Kalanchoe blossfeldiana. Planta 154:485–487CrossRefGoogle Scholar
  18. Janistyn B (1983) Gas chromatographic-mass spectroscopic identification and quantification of cyclic guanosine-3:5-monophosphate in maize seedlings (Zea mays). Planta 159:382–385CrossRefGoogle Scholar
  19. Janistyn B, Drumm H (1975) Phytochrome-mediated rapid changes of cyclic AMP in mustard seedlings (Sinopsis alba L.) Planta 125:81–85Google Scholar
  20. Janistyn B (1986) Effects of adenosine-3’:5’-monophosphate (camp) on the activity of soluble protein kinases in maize (Zea mays) coleoptile homogenates. Z Naturforsch (in press)Google Scholar
  21. Johnson LP, MacLeod JK, Summons RE, Hunt N (1980) Design of a stable isotope dilution gas chromatography-mass spectrometric assay for cAMP:Comparison with standard protein-binding and radioimmuno-assay methods. Anal Biochem 106:285–290PubMedCrossRefGoogle Scholar
  22. Johnson LP, MacLeod JK, Parker CW, Letham DS (1981a) The quantitation of adenosine-3:5-cyclic monophosphate in cultured tobacco tissue by mass spectrometry. FEBS Lett 124:119–121PubMedCrossRefGoogle Scholar
  23. Johnson LP, MacLeod JK, Parker CW, Letham DS, Hunt NH (1981b) Identification and quantitation of adenosine-3’:5’-cyclic monophosphate in plants using gas chromatography-mass spectrometry and high-performance liquid chromatography. Planta 152:195–201CrossRefGoogle Scholar
  24. Jost JP, Rickenberg HV (1971) Cyclic AMP. Annu Rev Biochem 40:741–774Google Scholar
  25. Kato R, Uno I, Ishikawa T, Fujii T (1983) Effects of cyclic AMP on the activity of soluble protein kinases in Lemna paucicostata. Plant Cell Physiol 24:841–848Google Scholar
  26. Kato R, Uno I, Ishikawa T, Fujii T (1984) Some characteristics of protein kinases in Lemna paucicostata. Planta Cell Physiol 25:691–696Google Scholar
  27. Kunau WH (1976) Chemie und Biochemie ungesättigter Fettsäuren. Angew Chem 88:97–111CrossRefGoogle Scholar
  28. Laskowski K, Kulikowska A (1967) Physicochemical properties of walnut oil. Roczpr Panstw Zakl Hig 18:483–486Google Scholar
  29. Lawson AM, Stillwell RN, Tacker MM, Tsuboyama K, McClosky JA (1971) Mass spectrometry of nucleic acid components. Trimethylsilyl derivatives of nucleotides. Am Chem Soc 93:1014–1023CrossRefGoogle Scholar
  30. Mohr H, Schopfer P (1978) Lehrbuch der Pflanzenphysiologie. Physiologie der Hormonwirkungen. Springer, Berlin Heidelberg New York, pp 368–390Google Scholar
  31. Myher JJ, Marai L, Kuksis A (1974) Identification of fatty acids by GC-MS using polar siloxance liquid phases. Anal Biochem 62:188–203PubMedCrossRefGoogle Scholar
  32. Neumüller O-A, Römpps (1985) Chemie Lexikon. Massenspektroskopie, Bd 4, 8. Aufl. 2500. Franckh’sche Verlagshandlung, W. Keller u. Co. StuttgartGoogle Scholar
  33. Newton RP, Gibbs N, Moyse CD, Wiebers LJ, Brown EG (1980) Mass spectrometric identification of adenosine 3:5-cyclic monophosphate isolated from a higher plant tissue. Phytochemistry 19:1909–1911CrossRefGoogle Scholar
  34. Pastan JH, Johnson GS, Anderson WB (1975) Role of cyclic nucleotides in growth control. Annu Rev Biochem 44:491–522PubMedCrossRefGoogle Scholar
  35. Ramwell WP (1973) The prostaglandins, vol 1. Plenum, New YorkGoogle Scholar
  36. Rasmussen H (1970) Cell communication, calcium ion and cyclic adenosine monophosphate. Science 170:404–412PubMedCrossRefGoogle Scholar
  37. Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174Google Scholar
  38. Saniewski M (1979) Questions about occurrence and possible roles of prostaglandins in the plant kingdom. Acta Hortic 91:73–81Google Scholar
  39. Shin-ichiro Ejiri, Honda H (1985) Effec of cyclic AMP and cyclic GMP on the autophosphorylation of elongation factor 1 from wheat embryos. Biochem Biophys Res Commun 128 (1):53–60PubMedCrossRefGoogle Scholar
  40. Spiteller G (1970) Massenspektrometrische Strukturanalyse organischer Verbindungen. Eine Einführung. Akad Verlagsgesellschaft, Frankfurt a.M.Google Scholar
  41. Sutherland EW, RA11 TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. Biol Chem 232:1077–1091Google Scholar
  42. Waller GR, Denver OC (1980) Biochemical applications of mass spectrometry. John Wiley, New YorkGoogle Scholar
  43. Wellmann E (1983) Encyclopedia of plant physiology, new series, vol 16B:745–754Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • B. Janistyn

There are no affiliations available

Personalised recommendations