Skip to main content

GC-MS Methods for Cytokinins and Metabolites

  • Chapter

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 3))

Abstract

Cytokinin is a generic term proposed to define both naturally occurring and synthetic compounds that induce cell division in plant tissue cultures (e.g., tobacco stem pith, soybean cotyledonary callus and carrot secondary phloem etc.) grown on defined medium in the presence of an optimal concentration of auxin. Although the idea that specific chemical substances may control cell division in plants dates back to the nineteenth century (Wiesner 1892), it first received experimental support only in the early 1920’s following the observation that wounding induced cell division in many plant tissues, e.g., potato parenchyma (Haberlandt 1921). Kinetin (Fig. 1) was the first cytokinin to be identified, and its isolation in 1956 from autoclaved herring sperm DNA was a direct consequence of studies on growth requirements of plant tissue cultures (Miller et al. 1956). It does not occur per se in living tissues, and had resulted as an artefact of the autoclaving process in the original work. Synthetic kinetin was found to be a very potent promoter of cell division, and induced cell division activity in the tobacco pith assay at concentrations as low as 1 μg 1 −1. The realization that the kinetin effect could be replaced by extracts from many plant tissues triggered the search for endogenous cytokinins, resulting in the isolation of the first natural cytokinin, zeatin [6-(4-hydroxy-3-methylbut-trans-2-enylamino) purine] from immature Zea mays kernels (Letham 1963; Letham et al. 1964, 1967). The number of cytokinins identified so far from diverse natural sources is nearing 30. In addition to their occurrence as free compounds in higher plants, cytokinins have also been isolated from transfer ribonucleic acid (tRNA) hydrolysates of plants, animals and microorganisms (Letham and Wettenhall 1977; Letham and Palni 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock DF, Morris RO (1970) Quantitative measurement of isoprenoid nucleosides in transfer ribonucleic aicd. Biochemistry 9: 3701–3705

    Article  PubMed  CAS  Google Scholar 

  • Barber M, Bordoli RS, Elliott GJ, Sedgwick RD, Tyler AN (1982) Fast atom bombardment mass spectrometry. Anal Chem 54:645A–657A

    Article  CAS  Google Scholar 

  • Biemann K (1962) Mass spectrometric methods. In: Linskens HF, Tracey MV (eds) Modern methods of plant analysis, vol 5. Springer, Berlin Heidelberg New York, pp 2650

    Google Scholar 

  • Blau K, King G (1978) Handbook of derivatives for chromatography. Heyden, London Bowie JH (1984) The formation and fragmentation of negative ions derived from organic molecules. Mass Spectrom Rev 3:161–207

    Google Scholar 

  • Brenner ML (1981) Modern methods for plant growth substance analysis. Annu Rev Plant Physiol 32:511–538

    Article  CAS  Google Scholar 

  • Budzikiewicz H (1981) Mass spectrometry of negative ions. Angew Chem Int Ed 20:624–637

    Article  Google Scholar 

  • Bullock MW, Hand JJ, Stokstad ELR (1956) Syntheses of 6-substituted purines. J Am Chem Soc 78:3693–3696

    Article  CAS  Google Scholar 

  • Burrows WJ, Armstrong DJ, Skoog F, Hecht SM, Boyle JTA, Leonard NJ, Occolowitz J (1969) The isolation and identification of two cytokinins from Escherichia coli transfer ribonucleic acids. Biochemistry 8:3071–3076

    Article  PubMed  CAS  Google Scholar 

  • Burrows WJ, Armstrong DJ, Kaminek M, Skoog F, Bock RM, Hecht SM, Dammann LG, Leonard NJ, Occolowitz J (1970) Isolation and identification of four cytokinins from wheat germ transfer ribonucleic acid. Biochemistry 9:1867–1872

    Article  PubMed  CAS  Google Scholar 

  • Chaves das Neves HJ, Pais MSS (1980) A new cytokinin from the fruits of Zantedeschia aethiopica. Tetrahedron Lett 21:4387–4390

    Article  Google Scholar 

  • Chen W-S (1983) Cytokinins of the developing mango fruit. Plant Physiol 71:356–361

    Article  PubMed  CAS  Google Scholar 

  • Claeys M, Messens E, Van Montagu M, Schell J (1978) GC-MS determination of cytokinins in Agrobacterium tumefaciens cultures. Fresenius Z Anal Chem 290:125–126

    Article  CAS  Google Scholar 

  • Cole DL, Leonard NJ, Cook JC (1975) System for separation and identification of the naturally occurring cytokinins High performance liquid chromatography-field desorption mass spectrometry. In: Zdzislaw P (ed) Recent dev oligonucleotide synth chem minor bases tRNA. Int Conf Inst Chem, Poznan, Poland, pp 153–174

    Google Scholar 

  • Corey EJ, Chaykovsky M (1962) Methylsulfinylcarbanion. J Am Chem Soc 84:866–867

    Article  CAS  Google Scholar 

  • Corey EJ, Venkateswarlu (1972) Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J Am Chem Soc 94:6190–6191

    Article  CAS  Google Scholar 

  • Corse J, Kuhnle J (1972) An improved synthesis of trans-zeatin. Synthesis 11:618–619

    Article  Google Scholar 

  • Cotter RJ (1980) Mass spectrometry of non-volatile compounds. Anal Chem 52:1589A–1606A

    Article  CAS  Google Scholar 

  • Cowley DE, Duke CC, Leipa AJ, MacLeod JK, Letham DS (1978) The structure and synthesis of cytokinin metabolites. 1. The 7- and 9-ß-D-glucofuranosides and pyranosides of zeatin and 6-benzylaminopurine. Aust J Chem 31:1095–1111

    Article  CAS  Google Scholar 

  • Daly JW, Christensen BE (1956) Purines. VI. The preparation of certain 6-substituted and 6,9-disubstituted purines. J Org Chem 21:177–179

    Article  CAS  Google Scholar 

  • Dauphin B, Teller G, Durand B (1977) A new method for the purification, characterization, and measurement of endogenous cytokinins extracted from Mercurialis annua shoots. Physiol Veg 15:747–762

    CAS  Google Scholar 

  • Dauphin B, Teller G, Durand B (1979) Identification and quantitative analysis of cytokinins from shoot apices of Mercurialis ambigua by gas chromatography-mass spectrometry computer system. Planta 144:113–119

    Article  CAS  Google Scholar 

  • Dauphin-Guerin B, Teller G, Durand B (1980) Different endogenous cytokinins between male and female Mercurialis annua L. Planta 148:124–129

    Article  CAS  Google Scholar 

  • Doree M, Guern J (1967) Sur un mode de degradation possible de quelques cytokinines, par MM. Compt Rend D 265:29–32

    CAS  Google Scholar 

  • Dougherty RC (1981) Negative chemical ionisation mass spectrometry. Anal Chem 53:625A–636A

    Article  CAS  Google Scholar 

  • Drozd J (1981) Chemical derivatization in gas chromatography. Elsevier Scientific Publishing, Amsterdam, pp 1–232 (J Chromatogr Libr vol 19)

    Article  Google Scholar 

  • Duke CC, MacLeod JK, Summons RE, Letham DS, Parker CW (1978) The structure and synthesis of cytokinin metabolites. II. Lupinic acid and O-ß-D-glucopyranosylzeatin from Lupinus angustifolius. Aust J Chem 31:1291–1301

    Article  CAS  Google Scholar 

  • Duke CC, Letham DS, Parker CW, MacLeod JK, Summons RE (1979) The structure and synthesis of cytokinin metabolites. IV. The complex of O-glucosylzeatin derivatives formed in Populus species. Phytochemistry 18:819–824

    Article  CAS  Google Scholar 

  • Duke CC, Entsch B, Letham DS, MacLeod JK, Parker CW, Summons RE (1980) Mass spectrometric and gas chromatographic-mass spectrometric studies of cytokinin metabolism. Recent Dev Mass Spectrom Biochem Med 6:7–19

    Google Scholar 

  • Dyson WH, Fox JE, McChesney JD (1972) Short term metabolism of urea and purine cytokinins. Plant Physiol 49:506–513

    Article  PubMed  CAS  Google Scholar 

  • Eagles J, Laird WM, Self R, Synge RLM (1974) Permethylation for mass spectrometry: Rearrangements for ester linkages and use of potassium t-butoxide. Biomed Mass Spectrom 1:43–48

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich BJ, Hall RC, Anderson RJ, Cox HG (1981) Sulfur detection in hydrocarbon matrices. A comparison of the flame photometric detector and the 700A Hall electrolytic conductivity detector. J Chromatogr Sci 19:245–249

    CAS  Google Scholar 

  • Einset JW, Skoog FK (1977) Isolation and identification of ribosyl-cis-zeatin from transfer RNA of Corynebacterium fascians. Biochem Biophys Res Commun 79:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Entsch B, Letham DS, Parker CW, Summons RE, Gollnow BI (1980) Metabolites of cytokinins. In: Skoog F (ed) Plant Growth Substances 1979. Springer, Berlin Heidelberg New York, p 527

    Google Scholar 

  • Ernst D, Schafer W, Oesterhelt D (1983a) Isolation and quantitation of isopentenyladenosine in an anise cell culture by single-ion monitoring, radioimmunoassay and bioassay. Planta 159:216–221

    Article  CAS  Google Scholar 

  • Ernst D, Schafer W, Oesterhelt D (1983b) Isolation and identification of a new, naturally occurring cytokinin (6-benzylaminopurine riboside) from an anise cell culture (Pimpinella anisum L.). Planta 159:222–225

    Article  CAS  Google Scholar 

  • Fleysher MH, Bloch A, Hakala MT, Nichol CA (1969) Synthesis and biological activity of some new N6-substituted purine nucleosides. J Med Chem 12:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Fox JE, Chen C-M (1967) Characterization of labelled ribonucleic acid from tissue grown on 14C-containing cytokinins. J Biol Chem 242:4490–4494

    PubMed  CAS  Google Scholar 

  • Fox JE, Sood CK, Buckwalter B, McChesney JD (1971) The metabolism and biological activity of a 9-substituted cytokinin. Plant Physiol 47:275–281

    Article  PubMed  CAS  Google Scholar 

  • Gaskin P, MacMillan J (1978) GC and GC-MS techniques for gibberellins. In: Hillman JR (ed) Isolation of plant growth substances. Cambridge University Press, Cambridge, p 157

    Google Scholar 

  • Grimm WAH, Leonard NJ (1967) Synthesis of the “minor nucleotide” N6-(y,y-Dimethyl-allyl)adenosine 5’-phosphate and relative rates of rearrangement of 1- to N6-dimethylallyl compounds for base, nucleoside, and nucleotide. Biochemistry 6:3625–3631

    Article  PubMed  CAS  Google Scholar 

  • Grob K, Grob G (1979) Practical capillary gas chromatography — a systematic approach. J High Resolut Chromatogr/Chromatogr Commun 2:109–117

    Article  CAS  Google Scholar 

  • Guerin B, Kahlem G, Teller G, Durand B (1984) Evidence for host genome involvement in cytokinin metabolism by male and female cells of Mercurialis annua transformed by strain 15955 of Agrobacterium tumefaciens. Plant Physiol 74:139–145

    Article  PubMed  CAS  Google Scholar 

  • Guha OK (1984) Effect of injection needle dimensions in gas chromatography. J Chromatogr 292:57–65

    Article  CAS  Google Scholar 

  • Haberlandt G (1921) Wundhormone als Erreger von Zellteilungen. Beitr Allg Bot 2:1–53

    Google Scholar 

  • Hahn H (1975) Cytokinins: A rapid extraction and purification method. Physiol Plant 34:204–207

    Article  CAS  Google Scholar 

  • Hakomori S (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethylsulfoxide. J Biochem 55:205–208

    PubMed  CAS  Google Scholar 

  • Harrison AG (1983) Chemical ionization mass spectrometry. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Hashizume T, McCloskey JA, Liehr JG (1976) Electron impact induced reactions of N6(3-methyl-2-butenyl)adenosine and related cytokinins Biomed Mass Spectrom 3:177–183

    CAS  Google Scholar 

  • Hashizume T, Sugiyama T, Imura M, Cory HT, Scott MF, McCloskey JA (1979) Determination of cytokinins by mass spectrometry based on stable isotope dilution. Anal Biochem 92:111–122

    Article  PubMed  CAS  Google Scholar 

  • Hashizume T, Suye S, Sugiyama T (1982a) Isolation and identification of cis-zeatin ribo- side from tubers of sweet potato (Ipomoea batatas. L.). Agric Biol Chem 46:663–665

    Article  CAS  Google Scholar 

  • Hashizume T, Suye S, Soedo T, Sugiyama T (1982b) Isolation and characterization of a new glucopyranosyl derivative of 6-(3-methyl-2-butenylamino)purine from sweet potato tubers. FEBS Lett 144:25–28

    Article  CAS  Google Scholar 

  • Hecht SM, Gupta AS, Leonard NJ (1970a) Mass spectra of ribonucleoside components of tRNA. II. Anal Biochem 38:230–251

    Article  CAS  Google Scholar 

  • Hecht SM, Leonard NJ, Schmitz RY, Skoog F (1970b) Cytokinins: Synthesis and growth-promoting activity of 2-substituted compounds in the N6-isopentenyladenosine and zeatin series. Phytochemistry 9:1173–1180

    Article  CAS  Google Scholar 

  • Hong CI, Tritsch GL, Mittelman A, Hebborn P, Chheda GB (1975) Synthesis and antitumor activity of 5’-phosphates and cyclic 3’-5’-phosphates derived from biologically active nucleosides. J Med Chem 18:465–473

    Article  PubMed  CAS  Google Scholar 

  • Hopping ME, Young H, Bukovac JM (1979) Endogenous plant growth substances in developing fruit of Prunus cerasus L. VI. Cytokinins in relation to initial fruit development. J Am Soc Hortic Sci 104:47–52

    CAS  Google Scholar 

  • Horgan R (1978) Analytical procedures for cytokinins. In: Hillman JR (ed) Isolation of plant growth substances. Cambridge University Press, Cambridge, p 157

    Google Scholar 

  • Horgan R (1981) Modem methods of plant hormone analysis. In. Reinhold L, Harborne J, Swain T (eds) Progress in phytochemistry, vol 7, pp 137–170

    CAS  Google Scholar 

  • Horgan R (1984) Cytokinins In: Wilkins MB (ed) Advanced plant physiology. Pitman, Bath, pp 53–75

    Google Scholar 

  • Horgan R, Scott IM (1985) Cytokinins. In: Crozier A, Rivier L (eds) Principles and practice of plant hormone analysis. Academic Press (in press)

    Google Scholar 

  • Horgan R, Hewett EW, Horgan JM, Purse J, Wareing PF (1975) A new cytokinin from Populus robusta. Phytochemistry 14:1005–1008

    Article  CAS  Google Scholar 

  • Howe I, Williams DH, Bowen RD (1981) Mass spectrometry: Principles and applications, 2nd edn, McGraw-Hill, New York

    Google Scholar 

  • Jennings W (1980) Gas chromatography with capillary columns Academic, New York

    Google Scholar 

  • Johlman CL, White RL, Wilkins CL (1983) Applications of Fourier transform mass spectrometry. Mass Spectrom Rev 2:389–415

    Article  CAS  Google Scholar 

  • Kadir K, Gregson S, Shaw G, Mok MC, Mok DWS (1984) Purines, pyrimidines, and imidazoles. Part 59. A convenient synthesis of (E)-zeatin and E-[8-14C]zeatin. J Chem Res (5)299

    Google Scholar 

  • Kemp TR, Andersen RA (1981) Separation of modified bases and ribonucleosides with cytokinin activity using fused silica capillary gas chromatography. J Chromatogr 209:467–471

    Article  CAS  Google Scholar 

  • Kemp TR, Andersen RA, Oh J, Vaughn TH (1982) High-resolution gas chromatography of methylated ribonucleosides and hypermodified adenosines. Evaluation of trimethylsilyl derivatization and split and splitless operation modes. J Chromatogr 241:325–332

    Article  CAS  Google Scholar 

  • Kemp TR, Anderson RA, Oh J (1983) Cytokinin determination in tRNA by fused silica capillary gas chromatography and nitrogen-selective detection. J Chromatogr 259:347–349

    Article  CAS  Google Scholar 

  • Knapp DR (1979) Handbook of analytical derivatization reactions. Wiley, New York Koenig WA, Smith LC, Crain PF, McCloskey JA (1971) Mass spectrometry of trifluoro-acetyl derivatives of nucleosides and hydrolysates of deoxyribonucleic acid. Biochemistry 10:3968–3979

    Google Scholar 

  • Koshimizu K, Matsubara S, Kusaki T, Mitsui T (1967) Isolation of a new cytokinin from immature yellow lupin seeds. Agric Biol Chem 31:795–801

    Article  CAS  Google Scholar 

  • Lee TS, Purse JG, Pryce RJ, Horgan R, Wareing PF (1981) Dihydroconiferyl alcohol: A cell division factor from Acer species. Planta 152:571–577

    Article  CAS  Google Scholar 

  • Lee Y-H, Mok MC, Mok DWS, Griffin DA, Shaw G (1985) Cytokinin metabolism in Phaseolus embryos. Plant Physiol 77:635–641

    Article  PubMed  CAS  Google Scholar 

  • Leonard NJ, Carraway K, Helgeson JP (1965) Characterization of NX, Nl disubstituted adenines by ultraviolet absorption spectra. J Heterocycl Chem 2:291–297

    Article  CAS  Google Scholar 

  • Leonard NJ, Hecht SM, Skoog F, Schmitz RY (1969) Cytokinins: Synthesis, mass spectra, and biological activity of compounds related to zeatin. Biochemistry 63:175–182

    CAS  Google Scholar 

  • Leonard NJ, Playtis AJ, Skoog F, Schmitz RY (1971) A stereoselective synthesis of ciszeatin. J Am Chem Soc 93:3056–3058

    Article  CAS  Google Scholar 

  • Letham DS (1963) Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci 8:569–573

    Article  PubMed  CAS  Google Scholar 

  • Letham DS (1973) Regulators of cell division in plant tissues. XV. Cytokinins from Zea mays. Phytochemistry 12:2445–2455

    Article  CAS  Google Scholar 

  • Letham DS (1978) Cytokinins In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol 1. Elsevier/North-Holland Biomedical, Amsterdam, pp 205–263

    Google Scholar 

  • Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197

    Article  CAS  Google Scholar 

  • Letham DS, Wettenhall REH (1977) Transfer RNA and cytokinins In: Stewart PR, Letham DS (eds) The ribonucleic acids. Springer, Berlin Heidelberg New York, p 374

    Google Scholar 

  • Letham DS, Shannon JS, McDonald IRC (1964) The structure of zeatin, a factor inducing cell division. Proc Chem Soc 230–231

    Google Scholar 

  • Letham DS, Shannon JS, McDonald IRC (1967) Regulators of cell division in plant tissues. III. The identity of zeatin. Tetrahedron 23:479–486

    Article  CAS  Google Scholar 

  • Letham DS, Wilson MM, Parker CW, Jenkins ID, MacLeod JK, Summons RE (1975) Regulators of cell division in plant tissues. XXIII. The identity of an unusual metabolite of 6-benzylaminopurine. Biochim Biophys Acta 399:61–70

    Article  PubMed  CAS  Google Scholar 

  • Letham DS, Summons RE, Entsch B, Gollnow BI, Parker CW, MacLeod JK (1978) Glucosylation of cytokinin analogues. Phytochemistry 17:2053–2057

    Article  CAS  Google Scholar 

  • Letham DS, Summons RE, Parker CW, MacLeod JK (1979) Identification of an amino-acid conjugate of 6-benzylaminopurine formed in Phaseolus vulgaris seedlings. Planta 146:71–74

    Article  CAS  Google Scholar 

  • Letham DS, Palni LMS, Tao G-Q, Gollnow BI, Bates CM (1983) Regulators of cell division in plant tissues. XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. J Plant Growth Regul 2:103–115

    Article  CAS  Google Scholar 

  • Ludewig M, Dorffling K, Konig WA (1982) Electron-capture capillary gas chromatography and mass spectrometry of trifluoroacetylated cytokinins. J Chromatogr 243:93–98

    Article  CAS  Google Scholar 

  • MacLeod JK, Summons RE, Letham DS (1976) Mass spectrometry of cytokinin metabolites. Per(trimethylsilyl) and permethyl derivatives of glucosides of zeatin and 6-benzylaminopurine. J Org Chem 41:3959–3967

    Article  PubMed  CAS  Google Scholar 

  • MacLeod JK, Tay SAB, Letham DS, Palni LMS (1986) Mass spectrometric studies of cytokinin metabolism; Advances in Mass Spectrometry, vol 10 (in press)

    Google Scholar 

  • MacMillan J (1977) Some aspects of gibberellin metabolism in higher plants. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, p 305

    Google Scholar 

  • Martin GC, Horgan R, Scott IM (1981) High-performance liquid chromatographic analysis of permethylated cytokinins J Chromatogr 219:167–170

    CAS  Google Scholar 

  • Martin GC, Horgan R, Nishijima C (1982) Changes in hormone content of pear receptacles from anthesis to shortly after fertilization as affected by pollination or GA3 treatment. J Am Soc Hortic Sci 107:479–482

    CAS  Google Scholar 

  • McCloskey JA, Hashizume T, Basile B, Sugiyama T, Sekiguchi S (1979) Determination of cytokinins in bamboo shoots by mass spectrometry using selected ion monitoring. Proc Jpn Acad, Ser B 55:445–450

    CAS  Google Scholar 

  • McDougall J, Hillman JR (1978) Analysis of indole-3-acetic acid using GC-MS techniques. In: Hillman JR (ed) Isolation of plant growth substances. Cambridge University Press, Cambridge, p 157

    Google Scholar 

  • McFadden W (1973) Techniques of combined gas chromatography-mass spectrometry. Wiley-Interscience, New York

    Google Scholar 

  • McGaw BA, Heald JK, Horgan R (1984a) Dihydrozeatin metabolism in radish seedlings. Phytochemistry 23:1373–1377

    Article  CAS  Google Scholar 

  • McGaw BA, Scott IM, Horgan R (1984b) Cytokinin biosynthesis and metabolism. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Cambridge University Press, Cambridge, UK, pp 105–133 (SEB Seminar Series no 23)

    Google Scholar 

  • McGaw BA, Horgan R, Heald JK (1985) Cytokinin metabolism and the modulation of cytokinin activity in radish. Phytochemistry 24:9–13

    Article  CAS  Google Scholar 

  • McLafferty FW (1980) Interpretation of mass spectra. 3rd edn, Univ Sci Books, Mill Valley, California

    Google Scholar 

  • McLafferty FW (1983) Tandem mass spectrometry. Wiley, New York

    Google Scholar 

  • McMahon DH (1985) A collaborative study to evaluate quantitation utilizing different injection modes for capillary GC. J Chromatogr Sci 23:137–143

    CAS  Google Scholar 

  • Millard BJ (1978) Quantitative mass spectrometry. Heyden and Son, London

    Google Scholar 

  • Miller CO, Skoog F, Okumura FS, Von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380

    Article  CAS  Google Scholar 

  • Morris RO (1977) Mass spectroscopic identification of cytokinins. Glucosyl zeatin and glucosyl ribosylzeatin from Vinca rosea crown gall. Plant Physiol 59:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Morris RO, Regier DA, Olson RM Jr, Struxness LA, Armstrong DJ (1981) Distribution of cytokinin active nucleosides in isoaccepting transfer ribonucleic acids from Agrobacterium tumefaciens. Biochemistry 21:6012–6017

    Article  Google Scholar 

  • Most BH, Williams JC, Parker KJ (1968) Gas chromatography of cytokinins J Chromatogr 38:136–138

    CAS  Google Scholar 

  • Murai N, Skoog F, Doyle ME, Hanson RS (1980) Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Corynebacterium fascians. Proc Natl Acad Sci USA 77:619–623

    Article  PubMed  CAS  Google Scholar 

  • Murakoshi I, Ikegami F, Ookawa N, Haginiwa J, Letham DS (1977) Enzymatic synthesis of lupinic acid, a novel metabolite of zeatin in higher plants. Chem Pharm Bull 25:520–522

    Article  CAS  Google Scholar 

  • Murakoshi I, Koide C, Ikegami F, Nasu K (1983) Biosynthesis of ß-(6-benzylaminopurin9-yl)alanine, a metabolite of cytokinin 6-benzylaminopurine in higher plants. Chem Pharm Bull 31:1777–1779

    Article  CAS  Google Scholar 

  • Ogilvie KK (1973) The tert-butyldimethylsilyl group as a protecting group in deoxynucleosides. Can J Chem 51:3799–3807

    Article  CAS  Google Scholar 

  • Palmer MV, Wong OC (1985) Identification of cytokinins from xylem exudate of Phaseolus vulgaris L. Plant Physiol 79:296–298

    Article  PubMed  CAS  Google Scholar 

  • Palmer MV, Horgan R, Wareing PF (1981) Cytokinin metabolism in Phaseolus vulgaris L. I. Variations in cytokinin levels in leaves of decapitated plants in relation to lateral bud outgrowth. J Exp Bot 32:1231–1241

    Article  CAS  Google Scholar 

  • Palni LMS, Horgan R (1982) Cytokinins from the culture medium of Vinca rosea crown gall tissue. Plant Sci Lett 24:327–334

    Article  CAS  Google Scholar 

  • Palni LMS, Horgan R (1983) Cytokinins in transfer RNA of normal and crown gall tissue of Vinca rosea. Planta 159:178–187

    Article  CAS  Google Scholar 

  • Palni LMS, Horgan R, Darrall NM, Stuchbury T, Wareing PF (1983a) Cytokinin biosynthesis in crown gall tissue of Vinca rosea: The significance of nucleotides. Planta 159:50–59

    Article  CAS  Google Scholar 

  • Palni LMS, Summons RE, Letham DS (1983b) Mass spectrometric analysis of cytokinins in plant tissues. V. Identification of the cytokinin complex of Datura innoxia crown gall tissue. Plant Physiol 72:858–863

    Article  CAS  Google Scholar 

  • Palni LMS, Palmer MV, Letham DS (1984) The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta 160:242–249

    Article  CAS  Google Scholar 

  • Palni LMS, Tay SAB, Nandi SK, Pianca DJ, deKlerk GJM, Wong C, Letham DS, MacLeod JK (1985) Cytokinin biosynthesis in plant tumour tissues. Biol Plant 27:195–203

    Article  CAS  Google Scholar 

  • Parker CW, Letham DS (1973) Regulators of cell division in plant tissues. XVI. Metabolism of zeatin by radish cotyledons and hypocotyls. Planta 114:199–218

    Article  CAS  Google Scholar 

  • Parker CW, Letham DS (1974) Regulators of cell division in plant tissues. XVIII. Metabolism of zeatin in Zea mays seedlings. Planta 115:337–344

    Article  CAS  Google Scholar 

  • Parker CW, Letham DS, Cowley DE, MacLeod JK (1972) Raphanatin, an unusual purine derivative and a metabolite of zeatin. Biochem Biophys Res Commun 49:460–466

    Article  PubMed  CAS  Google Scholar 

  • Parker CW, Letham DS, Gollnow BI, Summons RE, Duke CC, MacLeod JK (1978) Metabolism of zeatin by lupin seedlings. Planta 142:239–251

    Article  CAS  Google Scholar 

  • Pickup JF, McPherson K (1976) Theoretical considerations in stable isotope dilution mass spectrometry for organic analysis. Anal Chem 48:1885–1890

    Article  CAS  Google Scholar 

  • Pierce AE (1984) Handbook of silylation. Pierce Chemical Company, Rockford, Illinois, USA

    Google Scholar 

  • Playtis AJ, Leonard NJ (1971) The synthesis of ribosyl-cis-zeatin and thin layer chromatographic separation of the cis-and trans-isomers of ribosylzeatin. Biochem Biophys Res Commun 45:1–5

    Article  PubMed  CAS  Google Scholar 

  • Purse JG, Horgan R, Horgan JM, Wareing PF (1976) Cytokinins of sycamore spring sap. Planta 132:1–8

    Article  CAS  Google Scholar 

  • Quilliam MA, Westmore JB (1978) Sterically crowded trialkylsilyl derivatives for chromatography and mass spectrometry of biologically important compounds. Anal Chem 50:59–68

    Article  CAS  Google Scholar 

  • Quilliam MA, Ogilvie KK, Sadana KL, Westmore JB (1980) Mass spectra of sterically crowded trialkylsilyl derivatives of nucleosides. Org Mass Spectrom 15:207–219

    Article  CAS  Google Scholar 

  • Reynolds WD (1979) Field desorption mass spectrometry. Anal Chem 51:283A-293

    Article  CAS  Google Scholar 

  • A Richter WJ, Schwarz T (1978) Chemical ionisation — a mass spectrometric analytical procedure of increasing importance. Angew Chem Int Ed 17:424–439

    Article  Google Scholar 

  • Robins MJ, Hall RH, Thedford R (1967) N6-02-Isopentenyl)adenosine. A component of the transfer ribonucleic acid of yeast and of mammalian tissue; methods of isolation and characterization. Biochemistry 6:1837–1848

    Article  PubMed  CAS  Google Scholar 

  • Scott IM, Horgan R (1980) Quantification of cytokinins by selected ion monitoring using 15N-labelled internal standards. Biomed Mass Spectrom 7:446–449

    Article  CAS  Google Scholar 

  • Scott IM, Horgan R (1984) Mass-spectrometric quantification of cytokinin nucleotides and glycosides in tobacco crown gall tissue. Planta 161:345–354

    Article  CAS  Google Scholar 

  • Scott IM, Horgan R, McGaw BA (1980) Zeatin-9-glucoside, a major endogenous cytokinin of Vinca rosea crown gall tissue. Planta 149:472–475

    Article  CAS  Google Scholar 

  • Scott IM, Martin GC, Horgan R, Heald JK (1982) Mass spectrometric measurement of zeatin glycoside levels in Vinca rosea L. crown gall tissue. Planta 154:273–276

    Article  CAS  Google Scholar 

  • Scriven EFV (1983) 4-Dialkylaminopyridines: Superacylation and alkylation catalysts. Chem Soc Rev 12:129–161

    Article  CAS  Google Scholar 

  • Shannon JS, Letham DS (1966) Regulators of cell division in plant tissues. IV. The mass spectra of cytokinins and other 6-amino purines. NZ J Sci 9:833–842

    CAS  Google Scholar 

  • Shaw G, Smallwood BM, Wilson DV (1966) Purines, pyrimidines, and imidazoles. XXIV. Syntheses of zeatin, a naturally occurring adenine derivative with plant cell division promoting activity, and its 9-ß-D-ribofuranoside. J Chem Soc (C):921–924

    Google Scholar 

  • Shaw G, Smallwood BM, Wilson DV (1967) Phosphorylated derivatives of the cytokinins, zeatin and its 9-ß-D-ribofuranoside; naturally occurring adenine and adenosine derivatives with plant cell division promoting activity. Experientia 23:515–518

    Article  CAS  Google Scholar 

  • Shaw G, Smallwood BM, Wilson DV (1968) Purines, pyrimidines, and imidazoles. XXVII. Synthesis of 9-ß-D-ribofuranosylzeatin 5’-phosphate, a naturally occurring adenylic acid derivative with plant cell division promoting activity, and a new synthesis of 6chloro-9-ß-D-ribofuranosylpurine 5’-phosphate. J Chem Soc (C):1516–1519

    Google Scholar 

  • Skinner CG, Shive W (1955) Synthesis of some 6-(substituted)-aminopurines. J Am Chem Soc 77:6692–6693

    Article  CAS  Google Scholar 

  • Sponsel UM, MacMillan J (1978) Metabolism of gibberellin A29 in seeds of Pisum sativum cv. progress no. 9; use of (2H) and (3H)-GAs, and the identity of a new GA catabolite. Planta 144:69–78

    Article  CAS  Google Scholar 

  • Stafford AE, Corse J (1982) Fused-silica capillary gas chromatography of permethylated cytokinins with flame-ionisation and nitrogen-phosphorus detection. J Chromatogr 247:176–179

    Article  CAS  Google Scholar 

  • Stuchbury T, Palni LMS, Horgan R, Wareing PF (1979) The biosynthesis of cytokinins in crown gall tissue of Vinca rosea. Planta 147:97–102

    Article  CAS  Google Scholar 

  • Sugiyama T, Hashizume T (1980) An alternative synthesis of deuterated cytokinins. Nucleic Acid Res 8:27–31

    Google Scholar 

  • Sugiyama T, Iwasawa H, Hashizume T (1980) Synthesis of deuterated N6-(o-hydroxybenzyl)adenosine-d3. Agric Biol Chem 44:1057–1060

    Article  CAS  Google Scholar 

  • Sugiyama T, Suye S, Hashizume T (1983) Mass spectrometric determination of cytokinins in young sweet potato plants using deuterium labelled standards. Agric Biol Chem 47:315–318

    Article  CAS  Google Scholar 

  • Summons RE, MacLeod JK, Parker CW, Letham DS (1977) The occurrence of raphanatin as an endogenous cytokinin in radish seed. FEBS Lett 82:211–214

    Article  PubMed  CAS  Google Scholar 

  • Summons RE, Duke CC, Eichholzer JV, Entsch B, Letham DS, MacLeod JK, Parker CW (1979a) Mass spectrometric analysis of cytokinins in plant tissues. II. Quantitation ofcytokinins in Zea mays kernels using deuterium labelled standards. Biomed Mass Spectrom 6:407–413

    Article  CAS  Google Scholar 

  • Summons RE, Entsch B, Parker CW, Letham DS (1979b) Mass spectrometric analysis of cytokinins in plant tissues. III. Quantitation of the cytokinin glycoside complex of lupin pods by stable isotope dilution. FEBS LEtt 107:21–25

    Article  CAS  Google Scholar 

  • Summons RE, Entsch B, Letham DS, Gollnow BI, MacLeod JK (1980) Regulators of cell division in plant tissues. XXVIII. Metabolites of zeatin in sweet-corn kernels: purification and identification using high-performance liquid chromatography and chemical-ionisation mass spectrometry. Planta 147:422–434

    Article  CAS  Google Scholar 

  • Summons RE, Palni LMS, Letham DS (1983) Determination of intact zeatin nucleotide by direct chemical ionisation mass spectrometry. FEBS Lett 151:122–126

    Article  CAS  Google Scholar 

  • Sweeley CC, Elliott WH, Fries I, Ryhage R (1966) Mass spectrometric determination of unresolved components in gas chromatographic effluents. Anal Chem 38:1549–1553

    Article  PubMed  CAS  Google Scholar 

  • Tao G-Q, Letham DS, Palni LMS, Summons RE (1983) Cytokinin biochemistry in relation to leaf senescence. I. The metabolism of 6-benzylaminopurine and zeatin in oat leaf segments. J Plant Growth Regul 2:89–102

    Article  CAS  Google Scholar 

  • Tay SAB, MacLeod JK, Palni LMS, Letham DS (1985) Detection of cytokinins in a seaweed extract. Phytochemistry 24:2611–2614

    Article  CAS  Google Scholar 

  • Tay SAB, MacLeod JK, Palni LMS (1986) On the reported occurrence of cis-zeatin riboside as a free cytokinin in tobacco shoots. Plant Sci 43:131–134

    Article  CAS  Google Scholar 

  • Taylor JS, Koshioka M, Pharis RP, Sweet GB (1984) Changes in cytokinins and gibberellin-like substances in Pinus radiata buds during lateral shoot initiation and the characterization of ribosyl zeatin and a novel ribosyl zeatin glycoside. Plant Physiol 74:626–631

    Article  PubMed  CAS  Google Scholar 

  • Thompson AG, Horgan R, Heald JK (1975) Quantitative analysis of a cytokinin using single ion current monitoring. Planta 124:207–210

    Article  CAS  Google Scholar 

  • Tsui C, Shao LM, Wong CM, Tao G-Q, Letham DS, Parker CW, Summons RE, Hocart CH (1983) Identification of a cytokinin in water chestnuts (corms of Eleocharis tuberosa). Plant Sci Lett 32:225–231

    Article  CAS  Google Scholar 

  • Upper CD, Helgeson JP, Kemp JD, Schmidt CJ (1970) Gas-liquid chromatographic isolation of cytokinins from natural sources. 6-(3-Methyl-2-butenylamino)purine from Agrobacterium tumefaciens. Plant Physiol 45:543–547

    Article  PubMed  CAS  Google Scholar 

  • von Minden DL, McCloskey JA (1973) Mass spectrometry of nucleic acid components. N,O-permethyl derivatives of nucleosides. J Am Chem Soc 95:7480–7490

    Article  Google Scholar 

  • Vreman HJ, Schmitz RY, Skoog F, Playtis AJ, Frihart CR, Leonard NJ (1974) Synthesis of 2-methylthio-cis-and trans-ribosylzeatin and their isolation from Pisum tRNA. Phytochemistry 13:31–37

    Article  CAS  Google Scholar 

  • Vreman HJ, Thomas R, Corse J, Swaminathan S, Murai N (1978) Cytokinins in tRNA obtained from Spinacia oleracea L. leaves and isolated chloroplasts. Plant Physiol 61:296–306

    Article  PubMed  CAS  Google Scholar 

  • Waller GR, Dermer OC (1980) Biochemical applications of mass spectrometry. Wiley-In,terscience, New York

    Google Scholar 

  • Wang TL, Horgan R (1978) Dihydrozeatin riboside, a minor cytokinin from the leaves of Phaseolus vulgaris L. Planta 140:151–153

    Article  CAS  Google Scholar 

  • Wang TL, Thompson AG, Horgan R (1977) A cytokinin gluoside from the leaves of Phaseolus vulgaris L. Planta 135:285–288

    Article  CAS  Google Scholar 

  • Wang TL, Cove DJ, Beutelmann P, Hartmann E (1980) Isopentenyladenine from mutants of the moss Physcomitrella patens. Phytochemistry 19:1103–1105

    Article  CAS  Google Scholar 

  • Wang TL, Horgan R, Cove DJ (1981) Cytokinins from the moss Physcomitrella patens. Plant Physiol 68:735–738

    Article  PubMed  CAS  Google Scholar 

  • Wang TL, Wood EA, Brewin NJ (1982) Growth regulators, Rhizobium and nodulation in peas. Planta 155:350–355

    Article  CAS  Google Scholar 

  • Watanabe N, Yokota T, Takahashi N (1978a) Identification of zeatin and zeatin riboside in cones of the hop plant and their possible role in cone growth. Plant Cell Physiol 19:617–625

    CAS  Google Scholar 

  • Watanabe N, Yokota T, Takahashi N (1978b) cis-Zeatin riboside: Its occurrence as a free nucleoside in cones of the hop plant. Agric Biol Chem 42:2415–2416

    Article  CAS  Google Scholar 

  • Watson JT (1985) Introduction to mass spectrometry. 2nd edn. Raven, New York

    Google Scholar 

  • Whenham RJ (1983) Evaluation of selective detectors for the rapid and sensitive gas chromatographic assay of cytokinins, and application to the analysis of cytokinins in plant extracts. Planta 157:554–560

    Article  CAS  Google Scholar 

  • Wiesner J (1892) Die Elementarstruktur und das Wachstum der lebenden Substanz. A. Holder, Vienna

    Book  Google Scholar 

  • Wilson MM, Gordon ME, Letham DS, Parker CW (1974) Regulators of cell division in plant tissues. XIX. The metabolism of 6-benzylaminopurine in radish cotyledons and seedlings. J Exp Bot 25:725–732

    Article  Google Scholar 

  • Wood GW (1982) Some recent applications of field ionisation/field desorption mass spectrometry to organic chemistry. Tetrahedron 38:1125–1158

    Article  CAS  Google Scholar 

  • Yokota T, Murofushi N, Takahashi N (1980) Extraction, purification, and identification. In: MacMillan J (ed) Molecular aspects of plant hormones. Springer, Berlin Heidelberg New York, pp 113–201 (Hormonal regulation of development, vol 1)

    Google Scholar 

  • Yost RA, Fetterolf DD (1983) Tandem mass spectrometry (MS/MS) instrumentation. Mass Spectrom Rev 2:1–45

    Article  CAS  Google Scholar 

  • Young H (1977) Identification of cytokinins from natural sources by gas-liquid chromatography/mass spectrometry. Anal Biochem 79:226–233

    Article  PubMed  CAS  Google Scholar 

  • Zelleke A, Martin GC, Labavitch JM (1980) Detection of cytokinins using a gas chromatograph equipped with a sensitive nitrogen-phosphorus detector. J Am Soc Hortic Sci 105:50–53

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palni, L.M.S., Tay, S.A.B., MacLeod, J.K. (1986). GC-MS Methods for Cytokinins and Metabolites. In: Linskens, H.F., Jackson, J.F. (eds) Gas Chromatography/Mass Spectrometry. Modern Methods of Plant Analysis, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82612-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82612-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82614-6

  • Online ISBN: 978-3-642-82612-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics