Skip to main content

Chloroplasts as a Whole

  • Chapter
Cell Components

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 1))

Abstract

Since the publication of the last edition of this series, the scope and depth of our understanding of the nature and regulation of photosynthesis has taken a rapid leap forward. Advancements in three areas are most noteable. The compartmentalization of photosynthetic processes has been elucidated with regards to different plant types (C3, C4, CAM, and intermediates of these classes). The regulatory interaction of the photochemical activities of the thylakoid and the functioning of the enzymes involved in carbon metabolism in the stroma; both in terms of photochemical mediated pH, Mg2+, and light regulation of photosynthetic enzymes and the effects of carbon metabolism in the stroma on the redox poising of the photochemical apparatus have been characterized. Also significant is the advancement in our understanding of the regulation of plastic localized carbon metabolism by extra-chloroplastic milieu parameters such as pH, and the level of cation, Pi, energy charge and reducing equivalents; most likely representing an interdependence of chloroplast, cytoplasmic, and mitochondrial activities in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist JR (1976) Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14:145–163

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in chloroplasts. Polyphenoloxidases in Beta vulgaris. Plant Physiol 24:1–14

    PubMed  CAS  Google Scholar 

  • Bamberger E, Avron M (1975) Site of action of inhibitors of carbon dioxide assimilation by whole lettuce chloroplasts. Plant Physiol 56:481–485

    PubMed  CAS  Google Scholar 

  • Belknap WR (1983) Partial purifications of intact chloroplasts from Chlamydomonas rein- hardtii. Plant Physiol 72:1130–1132

    PubMed  CAS  Google Scholar 

  • Berkowitz GA, Gibbs M (1982a) Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast. Generation and use of reducing power. Plant Physiol 70:1143–1148

    PubMed  CAS  Google Scholar 

  • Berkowitz GA, Gibbs M (1982b) Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast. Site-specific inhibition of the photosynthetic carbon reduction cycle. Plant Physiol 70:1535–1540

    PubMed  CAS  Google Scholar 

  • Berkowitz GA, Gibbs M (1983) Reduced osmotic potential effects on photosynthesis. Identification of stromal acidification as a mediating factor. Plant Physiol 71:905–911

    PubMed  CAS  Google Scholar 

  • Borowitzka MA (1976) Some unusual features of the ultrastructure of the chloroplasts of the green algal orderCaulerpales and their development. Protoplasma 89:129–147

    Google Scholar 

  • Bourne WF, Miflin BJ (1973) Studies on nitrite reductase in barley. Planta 111:47–56

    CAS  Google Scholar 

  • Brown RH, Rigsby LL, Akin DE (1983) Enclosure of mitochondria by chloroplasts. Plant Physiol 71:437–439

    PubMed  CAS  Google Scholar 

  • Buchholz B, Reupke B, Bickel H, Schultz G (1979) Reconstitution of amino acid synthesis by combining spinach chloroplasts with other leaf organelles. Phytochemistry 18:1109–1111

    CAS  Google Scholar 

  • Burke J J, Wilson RF, Swafford JR (1982) Characterization of chloroplasts isolated from triazine-susceptible and triazine resistant biotypes of Brassica campestris L. Plant Physiol 70:24–29

    PubMed  CAS  Google Scholar 

  • Carell EF (1969) Studies on chloroplast development and replication in Euglena I. Vitamin B12 and chloroplast replication. J Cell Biol 41:431–440

    PubMed  CAS  Google Scholar 

  • Chapman KSR, Berry J A, Hatch MD (1980) Photosynthetic metabolism in bundle sheath cells of the C4 species Zea Mays: sources of ATP and NADPH and the contribution of Photosystem II. Arch Biochem Biophys 202:330–341

    PubMed  CAS  Google Scholar 

  • Chua NH, Schmidt GW (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81:461–483

    PubMed  CAS  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH, Keegstra K (1981) Separation and characterization of inner and outer envelope memebranes of pea chloroplasts. Proc Natl Acad Sci USA 78:3595–3599

    PubMed  CAS  Google Scholar 

  • Cobb AH (1977) The relationship of purity to photosynthetic activity in preparations of Codium fragile chloroplasts. Protoplasma 92:137–146

    PubMed  CAS  Google Scholar 

  • Costes C, Burghoffer C, Joyard J, Block M, Douce R (1979) Occurrence and biosynthesis of violaxanthin in isolated spinach chloroplast envelope. FEBS Lett 103:17–21

    CAS  Google Scholar 

  • Day DA, Jenkins CLD, Hatch MD (1981) Isolation and properties of functional mesophyll protoplasts and chloroplasts from Zea Mays. Aust J Plant Physiol 8:21–29

    CAS  Google Scholar 

  • Demmig B, Gimmler H (1983) Properties of the isolated intact chloroplast at cytoplasmic K+ concentrations. Plant Physiol 73:169–174

    PubMed  CAS  Google Scholar 

  • Demmig B, Winter K (1983) Photosynthetic characteristics of chloroplasts isolated from Mesembryanthemum crystallinum L., a halophilic plant capable of Crassulacean acid metabolism. Planta 159:66–76

    CAS  Google Scholar 

  • Douce R, Joyard J (1979) Structure and function of the plastid envelope. Adv Bot Res 7:1–116

    CAS  Google Scholar 

  • Edwards GE, Black CC (1971) Isolation of mesophyll cells and bundle sheath cells from Digitaria sanguinalis (L.) Scop, leaves and a scanning microscopy study of the internal leaf cell morphology. Plant Physiol 47:149–156

    PubMed  CAS  Google Scholar 

  • Edwards GE, Robinson SP, Tyler NJC, Walker DA (1978a) A requirement for chelation in obtaining functional chloroplasts of sunflower and wheat. Arch Biochem Biophys 190:421–433

    PubMed  CAS  Google Scholar 

  • Edwards GE, Robinson SP, Tyler NJC, Walker DA (1978b) Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat. Influence of orthophos- phate, pyrophosphate, and adenylates. Plant Physiol 62:313–319

    PubMed  CAS  Google Scholar 

  • Edwards GE, Lilley McCR, Craig S, Hatch MD (1979) Isolation of intact and functional chloroplasts from mesophyll and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Plant Physiol 63:821–827

    PubMed  CAS  Google Scholar 

  • Ellis RJ (1977) Protein synthesis by isolated chloroplasts. Biochim Biophys Acta 463:185–215

    CAS  Google Scholar 

  • Ellis RJ, Hartley MR (1982) Preparation of higher plant chloroplasts active in protein and RNA synthesis. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical, Amsterdam, pp 169–188

    Google Scholar 

  • Evans PK, Cocking EC (1977) Isolated plant protoplasts. In: Street HE (ed) Plant tissue and cell culture. Univ California Press, Berkeley

    Google Scholar 

  • Giles KL, Sarafls V (1974) Impactions of rigeseent integuments as a new feature of some algal chloroplasts. Nature 248:512–513

    PubMed  CAS  Google Scholar 

  • Grant BR, Wright SW (1980) Purity of chloroplasts prepared from the siphonous green alga, Caulerpa simpliciuscula, as determined by their ultrastructure and their enzymic content. Plant Physiol 66:130–138

    PubMed  CAS  Google Scholar 

  • Grant BR, Howard RJ, Gayler KR (1976) Isolation and properties of chloroplasts from the siphonous green alga Caulerpa simpliciuscula. Aust J Plant Physiol 3:639–651

    CAS  Google Scholar 

  • Halberg M, Larsson C (1983) Highly purified intact chloroplasts from mesophyll protoplasts of the C4 plant Digitaria sanguinalis. Inhibition of phosphoglycerate reduction by orthophosphate and by phosphoenolpyruvate. Physiol Plant 57:330–338

    Google Scholar 

  • Hall DO (1972) Nomenclature for isolated chloroplasts. Nature 235:125–126

    CAS  Google Scholar 

  • Hampp R (1979) Kinetics of mitochondrial phosphate transport and rates of respiration and phosphorylation during greening of etiolated Avena leaves. Plants 144:325–332

    CAS  Google Scholar 

  • Hampp R (1980) Rapid separation of the plastid, mitochondrial, and cytoplasmic fractions from intact leaf protoplasts of Avena. Determination of in vivo ATP pool sizes during greening. Planta 150:291–298

    CAS  Google Scholar 

  • Hampp R, Ziegler H (1980) On the use ofAvena protoplasts to study chloroplast development. Planta 147:485–494

    CAS  Google Scholar 

  • Heber U, Santarius KA (1970) Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch 25b:718–728

    Google Scholar 

  • Heldt HW (1980) Measurement of metabolite movement across the envelope and of the pH in the stroma and the thylakoid space in intact chloroplasts. Methods Enzymol 69:604–613

    CAS  Google Scholar 

  • Heldt HW, Sauer F (1971) The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta 234:83–91

    PubMed  CAS  Google Scholar 

  • Holdsworth RH (1971) The isolation and partial characterization of the pyrenoid protein of Eremosphaera viridis. J Cell Biol 51:499–513

    PubMed  CAS  Google Scholar 

  • Horvath G, Droppa M, Mustardy LA, Faludi-Daniel A (1978) Functional characteristics of intact chloroplasts isolated from mesophyll protoplasts and bundle sheath cells of maize. Planta 141:239–244

    CAS  Google Scholar 

  • Huber SC, Edwards GE (1975) An evaluation of some parameters required for the enzymatic isolation of cells and protoplasts with CO2 fixation capacity from C3 and C4 grasses. Physiol Plant 35:203–209

    CAS  Google Scholar 

  • Jensen RG (1979) The isolation of intact leaf cells, protoplasts, and chloroplasts. In: Gibbs M, Latzko E (eds) Photosynthesis II: photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology, new ser. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jensen RG, Bassham J A (1966) Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 4:1095–1101

    Google Scholar 

  • Kaiser WM, Kaiser G, Schoner S, Neimanis S (1981) Photosynthesis under osmotic stress. Differential recovery of photosynthetic activities of stroma enzymes, intact chloroplasts, protoplasts, and leaf slices after exposure to high solute concentrations. Plants 153:430—435

    CAS  Google Scholar 

  • Klein U, Chen C, Gibbs M (1983a) Photosynthetic properties of chloroplasts from Chla- mydomonas reinhardii. Plant Physiol 72:488–491

    PubMed  CAS  Google Scholar 

  • Klein U, Chen C, Gibbs M, Piatt-Aloia KA (1983b) Cellular fractionation of Chlamydo- monas reinhardii with emphasis on the isolation of the chloroplast. Plant Physiol 72:481–487

    PubMed  CAS  Google Scholar 

  • Kombrink E, Wober G (1980) Preparation of intact chloroplasts by chemically induced lysis of the green alga Dunaliella marina. Planta 149:123–129

    CAS  Google Scholar 

  • Kow YW, Gibbs M (1982) Characterization of a photosynthesizing reconstituted spinach chloroplast preparation. Regulation by primer, adenylates, ferredoxin, and pyridine nucleotides. Plant Physiol 69:179–186

    PubMed  CAS  Google Scholar 

  • Krueger RW, Miles D (1981) Photosynthesis in fescue I. High rate of electron transport and phosphorylation in chloroplasts of hexaploid plants. Plant Physiol 67:763–767

    PubMed  CAS  Google Scholar 

  • Larsson C (1983) Partition in aqueous polymer two-phase systems. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic Press, New York, pp 277–309

    Google Scholar 

  • Larsson C, Andersson B, Roos G (1977) Scanning electron microscopy of different populations of chloroplasts isolated by phase partition. Plant Sci Lett 8:291–298

    Google Scholar 

  • Latzko E, Gibbs M (1974) “Alkaline” C1-fructose- 1,6-diphosphatase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Chemie, Weinheim

    Google Scholar 

  • Leeeh RM (1964) The isolation of structurally intact chloroplasts. Biochim Biophys Acta 79:637–639

    Google Scholar 

  • Leegood RC, Walker DA (1979) Isolation of protoplasts and chloroplasts from flag leaves of Triticum aestivum L. Plant Physiol 63:1212–1214

    PubMed  CAS  Google Scholar 

  • Leegood RC, Walker DA (1983) Chloroplasts. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic Press, New York

    Google Scholar 

  • Lilley RMC, Larkum AWD (1981) Isolation of functionally intact rhodoplasts from Grif- fithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol 67:5–8

    PubMed  CAS  Google Scholar 

  • Lindhardt K, Walter K (1963) Phosphatases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 779–785

    Google Scholar 

  • Loomis WD (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol 31A:524–544

    Google Scholar 

  • Maury WJ, Huber SC, Moreland DE (1981) Effects of magnesium on intact chloroplasts II. Cation specificity and involvements of the envelope ATPase in (sodium) potassium/ proton exchange across the envelope. Plant Physiol 68:1257–1263

    PubMed  CAS  Google Scholar 

  • Miflin BJ (1974) The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of roots and leaves. Plant Physiol 54:550–555

    PubMed  CAS  Google Scholar 

  • Miflin BJ, Beevers H (1974) Isolation of intact plastids from a range of plant tissues. Plant Physiol 53:870–874

    PubMed  CAS  Google Scholar 

  • Mills WR, Joy KW (1980) A rapid method for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves. Plants 148:75–83

    CAS  Google Scholar 

  • Mills WR, Lea PJ, Miflin BJ (1980) Photosynthetic formation of the aspartate family of amino acids in isolated chloroplasts. Plant Physiol 65:1166–1172

    PubMed  CAS  Google Scholar 

  • Monson RK, Rumpho ME, Edwards GE (1983) The influence of inorganic phosphate on photosynthesis in intact chloroplasts from Mesembry anthem urn crystallinum L. plants exhibiting C3 photosynthesis or Crassulacean acid metabolism. Plants 159:97–104

    CAS  Google Scholar 

  • Morgan J A, Brown RH (1979) Photosynthesis in grass species differing in carbon dioxide fixation pathways II. A search for species with intermediate gas exchange and anatomical characteristics. Plant Physiol 64:257–262

    PubMed  CAS  Google Scholar 

  • Morgenthaler J-J, Price CA, Robinson JM, Gibbs M (1974) Photosynthetic activity of spinach chloroplasts after isopycnic centrifugation in gradients of silica. Plant Physiol 54:532–534

    PubMed  CAS  Google Scholar 

  • Morgenthaler J-J, Marsden MPF, Price CA (1975) Factors affecting the separation of photosynthetically competent chloroplasts in gradients of silica sols. Arch Biochem Biophys 168:289–301

    PubMed  CAS  Google Scholar 

  • Mourioux G, Douce R (1981) Slow passive diffusion of orthophosphate between intact isolated chloroplasts and suspending medium. Plant Physiol 67:470–473

    PubMed  CAS  Google Scholar 

  • Nagata T, Ishii S (1979) A rapid method for isolation of mesophyll protoplasts. Can J Bot 57:1820–1823

    Google Scholar 

  • Nakatani HY, Barber J (1977) An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta 461:510–512

    CAS  Google Scholar 

  • Nishida K, Sanada Y (1977) Carbon dioxide fixation in chloroplasts isolated from CAM plants. In: Mujachi S, Katoh S, Jujita Y, Shibuta K (eds) Photosynthetic organelles, structure and function. Special issue of Plant Cell Physiol 3:341–346

    Google Scholar 

  • Nishimura M, Akazawa T (1975) Photosynthetic activities of spinach leaf protoplasts. Plant Physiol 55:712–716

    PubMed  CAS  Google Scholar 

  • Nishimura M, Graham D, Akazawa T (1976) Isolation of intact chloroplasts and other cell organelles from spinach leaf protoplasts. Plant Physiol 58:309–314

    PubMed  CAS  Google Scholar 

  • O’Neal D, Hew CS, Latzko E, Gibbs M (1972) Photosynthetic carbon metabolism of isolated corn chloroplasts. Plant Physiol 49:607–614

    PubMed  Google Scholar 

  • Ortiz W, Reardon EM, Price CA (1980) Preparation of chloroplasts fromEuglena highly active in protein synthesis. Plant Physiol 66:291–294

    PubMed  CAS  Google Scholar 

  • Otsuki Y, Takebe I (1969) Isolation of intact mesophyll cells and their protoplasts from higher plants. Plant Cell Physiol 10:917–921

    Google Scholar 

  • Perrin DD, Dempsey B (1974) Buffers for pH and metal ion control. Chapman and Hall, London

    Google Scholar 

  • Piazza G, Gibbs M (1983) Influence of adenosine phosphates and magnesium on photosynthesis in chloroplasts from peas, Sedum, and spinach. Plant Physiol 71:680–687

    PubMed  CAS  Google Scholar 

  • Piazza G, Smith MG, Gibbs M (1982) Characterization of the formation and distribution of photosynthetic products by Sedum praealtum chloroplasts. Plant Physiol 70:1748–1758

    PubMed  CAS  Google Scholar 

  • Pilwat G, Hampp R, Zimmermann U (1980) Electrical field effects induced in membranes of developing chloroplasts. Planta 147:396–404

    Google Scholar 

  • Plaut Z (1971) Inhibition of photosynthetic carbon dioxide fixation in isolated spinach chloroplasts exposed to reduced osmotic potentials. Plant Physiol 48:591–595

    PubMed  CAS  Google Scholar 

  • Price CA (1982) Centrifugation in density gradients. Academic, New York

    Google Scholar 

  • Price CA (1983) General principles of cell fractionation. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic Press, New York, pp 1–24

    Google Scholar 

  • Price CA, Reardon EM (1982) Isolation of chloroplasts for protein synthesis from spinach and Euglena gracilis by centrifugation in silica sols. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical, Amsterdam, pp 189–210

    Google Scholar 

  • Radosevich SR, Devilliers OT (1976) Studies on the mechanism of S-triazine resistance in common groundsel. Weed Sci 4:229–232

    Google Scholar 

  • Rathnam CKM, Das VSR (1974) Nitrate metabolism in relation to the aspartate-type C-4 pathway of photosynthesis in Eleusine coracana. Can J Bot 52:2599–2605

    CAS  Google Scholar 

  • Rathnam CKM, Edwards GE (1976) Protoplasts as a tool for isolating functional chloroplasts from leaves. Plant Cell Physiol 173:177–186

    Google Scholar 

  • Rathnam CKM, Edwards GE (1977) C4 acid decarboxylation and CO2 donation to photosynthesis in bundle sheath strands and chloroplasts from species representing three groups of C4 plants. Arch Biochem Biophys 182:1–13

    PubMed  CAS  Google Scholar 

  • Robinson GP, Walker DA (1979) Rapid separation of the chloroplast and cytoplasmic fractions from intact leaf protoplasts. Arch Biochem Biophys 196:319–323

    PubMed  CAS  Google Scholar 

  • Robinson SP, Wiskich JT (1977) Pyrophosphate inhibition of carbon dioxide fixation in isolated pea chloroplasts by uptake in exchange for endogenous adenine nucleotides. Plant Physiol 59:422–127

    PubMed  CAS  Google Scholar 

  • Schlosser UG, Sachs H, Robinson DG (1976) Isolation of protoplasts by means of a “species-specific” autolysine in Chlamydomonas. Protoplasma 88:51–64

    PubMed  CAS  Google Scholar 

  • Schmitt JM, Hermann RG (1977) Fractionation of cell organelles in silica sol radients. In: Prescott DM (ed) Methods in cell biology, vol 15. Academic Press, New York, pp 177–200

    Google Scholar 

  • Schnabl H, Hampp R (1980) Vicia guard cell protoplasts lack photosystem II activity. Na- turwissenschaften 67:465–466

    CAS  Google Scholar 

  • Shepard DC, Bidwell RGS (1973) Photosynthesis and carbon metabolism in a chloroplast preparation from Acetabularia. Protoplasma 76:289–307

    Google Scholar 

  • Spalding MH, Edwards GE (1980) Photosynthesis in isolated chloroplasts of the Crassu- lacean acid metabolism plant Sedum praealtum. Plant Physiol 65:1044–1048

    PubMed  CAS  Google Scholar 

  • Spalding MH, Schmitt MR, Ku SB, Edwards GE (1979) Intracellular localization of some key enzymes of Crassulacean acid metabolism is Sedum praealtum. Plant Physiol 63:738–743

    PubMed  CAS  Google Scholar 

  • Spiller H, Böger P (1980) Photosynthetically active algal preparations. Methods Enzymol 69:105–121

    CAS  Google Scholar 

  • Stitt M, Heldt HW (1981) Physiological rates of starch breakdown in isolated intact spinach chloroplasts. Plant Physiol 68:755–761

    PubMed  CAS  Google Scholar 

  • Stokes DM, Walker DA (1972) Photosynthesis by isolated chloroplasts. Inhibition by DL- glyceraldehyde of carbon dioxide assimilation. Biochem J 128:1147–1157

    PubMed  CAS  Google Scholar 

  • Takabe T, Nishimura M, Akazawa T (1979) Isolation of intact chloroplasts from spinach leaf by centrifugation in gradients of the modified silica “Percoll”. Agric Biol Chem 43:2137–2142

    CAS  Google Scholar 

  • Trench RK, Boyle JE, Smith DC (1973) Association between chloroplasts of Codium fragile and the mollusc Elysia viridis I. Characteristics of isolated Codium chloroplasts. Proc R Soc Lond Ser B 184:51–61

    CAS  Google Scholar 

  • Van Ginkel G, Brown JS (1978) Endogenous eatalase and superoxide dismutase activities in photosynthetic membranes. FEBS Lett 94:284–286

    Google Scholar 

  • Walbot V (1977) Use of silica sol step gradients to prepare bundle sheath and mesophyll chloroplasts fromPanicum maximum. Plant Physiol 60:102–108

    PubMed  CAS  Google Scholar 

  • Walbot V, Hoisington DA (1982) Isolation of mesophyll and bundle sheath chloroplasts from maize. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical, Amsterdam, pp 211–220

    Google Scholar 

  • Walden R, Leaver CJ (1981) Synthesis of chloroplast proteins during germination and early development of cucumber. Plant Physiol 67:1090–1096

    PubMed  CAS  Google Scholar 

  • Walker DA (1964) Improved rates of carbon dioxide fixation by illuminated chloroplasts. Biochem J 92:22–23

    Google Scholar 

  • Walker DA (1976) CO2 fixation by intact chloroplasts: photosynthetic induction and its relation to transport phenomena and control mechanisms. In: Barber J (ed) The intact chloroplast. Elsevier, Amsterdam, pp 235–278

    Google Scholar 

  • Walker DA (1980a) Preparation of higher plant chloroplasts. Methods Enzymol 69:94–104

    Google Scholar 

  • Walker JRL (1980b) Enzyme isolation from plants and the phenolic problem. What’s New in Plant Physiol 11:33–36

    CAS  Google Scholar 

  • Walker JRL, McCallion RF (1980) The selective inhibition of ortho- and para-diphenol oxidases. Phytochemistry 19:373–377

    CAS  Google Scholar 

  • Willison JHM, Davey MR (1976) Fraction I protein crystals in chloroplasts of isolated tobacco leaf protoplasts: a thin section and freeze etch morphological study. J Ultrastruct Res 55:303–311

    PubMed  CAS  Google Scholar 

  • Wink M, Hartmann T (1982) Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts ofLupinis polyphyllus. Plant Physiol 70:74–77

    PubMed  CAS  Google Scholar 

  • Winter K, Foster JG, Edwards GE, Holtum JAM (1982) Intracellular localization of enzymes of carbon metabolism in Mesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics of performing Crassulacean acid metabolism. Plant Physiol 69:300–307

    PubMed  CAS  Google Scholar 

  • Wolosuik RA, Buchanan BB (1979) Studies on the regulation of chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 251:6456–6461

    Google Scholar 

  • Wright SW, Grant BR (1978) Properties of chloroplasts isolated from siphonous algae. Effects of osmotic shock and detergent treatment on intactness. Plant Physiol 61:768–771

    PubMed  CAS  Google Scholar 

  • Yamagishi A, Satoh K, Katoh S (1981) The concentrations and thermodynamic activities of cations in intact Bryopsis chloroplasts. Bioehim Biophys Acta 637:252–263

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berkowitz, G.A., Gibbs, M. (1985). Chloroplasts as a Whole. In: Linskens, HF., Jackson, J.F. (eds) Cell Components. Modern Methods of Plant Analysis, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82587-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82587-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82589-7

  • Online ISBN: 978-3-642-82587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics