Skip to main content

The Marker Concept in Cell Fractionation

  • Chapter
Cell Components

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 1))

Abstract

The intent of this chapter is to provide a practical foundation for anyone interested in performing subcellular fractionation of plant tissue. It is not its purpose to discuss the validity of various markers, since this topic has recently been thoroughly reviewed (Quail 1979). Specific marker assay procedures are given in other chapters of this book and are also available elsewhere (Hall and Moore 1983). Catalogs of “commonly accepted” markers have been published (Bowles et al. 1979; Quail 1979) and should be referred to by the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpi A, Beevers H (1981) Proteinases and enzyme stability in crude extracts of castor bean endosperm. Plant Physiol 67:499–502

    Article  PubMed  CAS  Google Scholar 

  • Anderson JW (1968) Extraction of enzymes and subcellular organelles from plant tissues. Phytochemistry 7:1973–1988

    Article  CAS  Google Scholar 

  • Bishop DG, Oertle E (1983) Inhibition of potato tuber lipoxygenase and lipolytic acyl hydrolase activities by nupercaine. Plant Sci Lett 31:49–53

    Article  CAS  Google Scholar 

  • Boiler T, Kende H (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol 63:1123–1132

    Article  Google Scholar 

  • Bowles DJ, Quail PH, Morré DJ, Hartmann GC (1979) Use of markers in plant-cell fractionation. In: Reid E (ed) Plant organelles, vol 9. Ellis Horwood, Chichester, pp 207–224

    Google Scholar 

  • Caldwell CR, Haug A (1980) Kinetic characterization of barley root plasma membrane-bound Ca2+- and Mg2 +-dependent adenosine triphosphatase activities. Physiol Plant 50:183–193

    Article  CAS  Google Scholar 

  • Dalling MJ, Tolbert NE, Hageman RH (1972) Intracellular location of nitrate reductase and nitrite reductase I. Spinach and tobacco leaves. Biochim Biophys Acta 283:505–512

    Article  PubMed  CAS  Google Scholar 

  • DeDuve C (1971) Tissue fractionation: past and present. J Cell Biol 50:20D-55D

    Article  PubMed  CAS  Google Scholar 

  • DeDuve C (1975) Exploring cells with a centrifuge. Science 189:186–194

    Article  PubMed  CAS  Google Scholar 

  • Dubacq J-P, Kader J-C (1978) Free flow electrophoresis of chloroplasts. Plant Physiol 61:465–468

    Article  PubMed  CAS  Google Scholar 

  • Elias BA, Givan CV (1978) Density gradient and differential centrifugation methods for chloroplast purification and enzyme localization in leaf tissue. The case of citrate synthase inPisum sativum L. Planta 142:317–320

    Article  CAS  Google Scholar 

  • Fisher J, Hodges TK (1969) Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol 44:385–395

    Article  PubMed  CAS  Google Scholar 

  • Ford T, Rickwood D, Graham J (1983) Buoyant densities of macromolecules, macromolecular complexes, and cell organelles in nycodenz gradients. Anal Biochem 128:232–239

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Hubbard AL, Fowlers S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application of endoplasmic reticulum. J Cell Biol 93:97–102

    Article  PubMed  CAS  Google Scholar 

  • Galliard T (1974) Technique for overcoming problems of lipolytic enzymes and lipoxygenases in the preparation of plant organelles. In: Fleischer S, Packer L (eds) Methods Enzymol 31:520–528

    Google Scholar 

  • Gardner G, Pike CS, Rice HV, Briggs WR (1971) Disaggregation of phytochrome in vitro - a consequence of proteolysis. Plant Physiol 48:686–693

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Moore AL (eds) (1983) Isolation of membranes and organelles from plant cells. Academic Press, London

    Google Scholar 

  • Hannig K, Heidrich H-G (1974) The use of continuous preparative free-flow electrophoresis for dissociating cell fractions and isolation of membranous components. In: Fleischer S, Packer L (eds) Methods Enzymol 31:746–766

    Google Scholar 

  • Hepler PK (1981) The structure of the endoplasmic reticulum revealed by osmium tetraoxide - potassium ferricyanide staining. Eur J Cell Biol 26:102–110

    PubMed  CAS  Google Scholar 

  • Hurkman W, Morré DJ, Bracker CE, Mollenhauer HH (1979) Identification of etioplast membranes in fractions from soybean hypocotyls. Plant Physiol 64:398–403

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AB (1968) A procedure for isolation of proplastids from etiolated maize leaves. J Cell Biol 38:238–244

    Article  PubMed  CAS  Google Scholar 

  • Jaynes TA, Haskins FA, Gorz HJ, Kleinhofs A (1972) Solubility of β-glucosidase in homogenates of sweetclover leaves and bean hypocotyls. Plant Physiol 49:277–279

    Article  PubMed  CAS  Google Scholar 

  • Jones RL (1980) The isolation of endoplasmic reticulum from barley aleurone layers. Planta 150:58–69

    Article  CAS  Google Scholar 

  • Koehler DE, Leonard RT, Vanderwoude WJ, Linkins AE, Lewis LN (1976) Association of latent cellulase activity with plasma membranes from kidney bean abscission zones. Plant Physiol 58:324–330

    Article  PubMed  CAS  Google Scholar 

  • Koundal KR, Sawhney SK, Sinha SK (1983) Oxidation of 2-mercaptoethanol in the presence of tris buffer. Phytochemistry 22:2183–2184

    Article  CAS  Google Scholar 

  • Larsson C, Anderson B (1979) Two-phase methods for chloroplasts, chloroplast elements, and mitochondria. In: Reid E (ed) Plant organelles. Ellis Horwood, Chichester, pp 35–46

    Google Scholar 

  • Leonard RT, Vanderwoude WJ (1976) Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation. An anomalous effect of ficoll. Plant Physiol 57:105–114

    Article  PubMed  CAS  Google Scholar 

  • Leonard RT, Hansen D, Hodges TK (1973) Membrane-bond adenosine triphosphatase activities of oat roots. Plant Physiol 51:749–754

    Article  PubMed  CAS  Google Scholar 

  • Loomis WD (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. In: Fleischer S, Packer L (eds) Methods Enzymol 31:528–554

    Google Scholar 

  • Loomis WD, Battaile J (1966) Phenolic compounds and the isolation of plant enzymes. Phytochemistry 5:423–438

    Article  CAS  Google Scholar 

  • Lord JM, Kagawa T, Beevers H (1972) Intracellular distribution of enzymes of the cytidine diphosphate choline pathway in castor bean endosperm. Proc Natl Acad Sci USA 69:2429–2432

    Article  PubMed  CAS  Google Scholar 

  • Lord JM, Kagawa T, Moore TS, Beevers H (1973) Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol 57:659–667

    Article  PubMed  CAS  Google Scholar 

  • Mandala S, Mettler IJ, Taiz L (1982) Localization of the proton pump of corn coleoptile microsomal membranes by density gradient centrifugation. Plant Physiol 70:1743–1747

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Miflin BJ (1974) The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of roots and leaves. Plant Physiol 54:550–555

    Article  PubMed  CAS  Google Scholar 

  • Moore AL, Proudlove MO (1983) Mitochondria and sub-mitochondrial particles. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic Press, London, pp 153–184

    Google Scholar 

  • Moreau RA (1985 a) Membrane-degrading enzymes in the leaves of Solanum tuberosum. Phytochemistry 24:411–414

    Article  CAS  Google Scholar 

  • Moreau RA (1984 b) Membrane-degrading enzymes in the tubers of Solanum tuberosum. J Agric Food Chem 33:36–39

    Article  Google Scholar 

  • Morré DJ, Cline GB, Coleman R, Evans WH, Glaumann H, Headon DR, Reid E, Siebert G, Widnell CC (1979) Markers for membranous cell components. Eur J Cell Biol 20:195–199

    Google Scholar 

  • Morré DJ, Morré DM, Heidrich-H-G (1983) Subfractionation of rat liver Golgi apparatus by free-flow electrophoresis. Eur J Cell Biol 31:263–274

    PubMed  Google Scholar 

  • Nagahashi G, Baker AF (1984) β-glucosidase activity in corn root homogenates: problems in subcellular fractionation. Plant Physiol 76:861–864

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi J, Beevers L (1978) Subcellular localization of glycosyl transferases involved in glycoprotein biosynthesis in the cotyledons of Pisum sativum L. Plant Physiol 61:451–459

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi J, Hiraike K (1982) Effects of centrifugal force and centrifugation time on the sedimentation of plant organelles. Plant Physiol 69:546–548

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi J, Kane AP (1982) Triton-stimulated nucleoside diphosphatase activity: subcellular localization in corn root homogenates. Protoplasma 112:167–173

    Article  CAS  Google Scholar 

  • Nagahashi G, Seibles TS, Jones SB, Rao J (1985 a) Purification of cell wall fragments by sucrose gradient centrifugation. Protoplasma (in press).

    Google Scholar 

  • Nagahashi G, Seibles TS, Tu S-I (1985 b) The pH dependent distribution of β-glucosidase activity in isolated particulate fractions. Plant Sci Lett 38:173–178

    Article  CAS  Google Scholar 

  • Philipp E-I, Franke WW, Keenan TW, Stadler J, Jarasch E-D (1976) Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissue. J Cell Biol 68:11–29

    Article  PubMed  CAS  Google Scholar 

  • Pertoft H, Laurent TC (1977) Isopycnic separation of cells and cell organelles by centrifugation in modified colloidal silica gradients. In: Catsimpoolas N (ed) Methods of cell separation, vol 1. Plenum, New York, pp 25–65

    Google Scholar 

  • Price CA (1979) Isolation of plant nuclei. In: Reid E (ed) Plant Organelles. Ellis Horwood, Chichester, pp 200–206

    Google Scholar 

  • Price CA (1982) Centrifugation in density gradients. Academic Press, London

    Google Scholar 

  • Price CA (1983) General principles of cell fractionation. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic Press, New York, pp 1–24

    Google Scholar 

  • Quail PH (1979) Plant cell fractionation. Annu Rev Plant Physiol 30:425–484

    Article  CAS  Google Scholar 

  • Ray PM (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiol 59:594–599

    Article  PubMed  CAS  Google Scholar 

  • Scherer GFE (1981) Auxin-stimulated ATPase in membrane fractions from pumpkin hypocotyls (Cucurbita maxima L.) Planta 151:434–438

    Article  CAS  Google Scholar 

  • Scherer GFE, Morré DJ (1978) Action and inhibition of endogenous phospholipases during isolation of plant membranes. Plant Physiol 62:933–937

    Article  PubMed  CAS  Google Scholar 

  • Schneider WC, Hogeboom GH (1951) Cytochemical studies of mammalian tissues: the isolation of cell components by differential centrifugation: A review. Cancer Res 11:1–20

    PubMed  CAS  Google Scholar 

  • Schroeder F, Fontaine RN, Kinder DA (1982) LM fibroblast plasma membrane subfractionation by affinity chromatography on con A-sepharose. Biochim Biophys Acta 690:231–242

    Article  PubMed  CAS  Google Scholar 

  • Tautvydas KJ (1971) Mass isolation of pea nuclei. Plant Physiol 47:499–503

    Article  PubMed  CAS  Google Scholar 

  • Van der Wilden W, Gilkes NR, Chrispeels MJ (1980) The endoplasmic reticulum of mung bean cotyledons. Plant Physiol 66:390–394

    Article  PubMed  Google Scholar 

  • Yakmyshyn LM, Walker K, Thomson ABR (1982) Use of percoll in the isolation and purification of rabbit small intestinal brush border membranes. Biochim Biophys Acta 690:269–281

    Article  Google Scholar 

  • Yoshida S, Uemura M, Niki T, Sakai A, Gusta LV (1983) Partition of membrane particles in aqueous two-polymer phase system and its practical use for purification of plasma membranes from plants. Plant Physiol 72:105–114

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagahashi, G. (1985). The Marker Concept in Cell Fractionation. In: Linskens, HF., Jackson, J.F. (eds) Cell Components. Modern Methods of Plant Analysis, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82587-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82587-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82589-7

  • Online ISBN: 978-3-642-82587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics