Skip to main content

Microtubules

  • Chapter
Cell Components

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 1))

  • 280 Accesses

Abstract

Animal cells are endowed with an elaborate cytoskeletal network comprised of microtubules (MT’s) and associated proteins, microfilaments, and one or more elements of a heterogeneous group of intermediate filaments (Roberts and Hyams 1979; Jackson 1982; Lazarides 1982): plant cells are known to possess a more limited complement of MT’s and microfilaments (Lloyd 1982; Gunning and Hardham 1982; Sabnis and Hart 1982). The mechanisms whereby the cytoskeletal functions of MT’s and microfilaments are expressed in plant cells are not immediately obvious. Nevertheless, accumulating cytological evidence points to an involvement of MT’s at various spatial and temporal loci in cellular morphogenesis (Gunning 1982; Gunning and Hardham 1982). The involvement of regulatory proteins such as calmodulin as pleiotropic regulators of cytoskeletal organisation and mechanochemical processes in plants has been suggested by indirect evidence (Job et al. 1981; Schleicher et al. 1982; Kakiuchi and Sobue 1983). However, biochemical data on the properties, assembly and activity of plant MT’s (reviewed by Sabnis and Hart 1982) are extremely sparse. Published reports on the isolation of plant tubulin are very few in number and have dealt with such disparate plant sources as yeast cells, Chlamydomonas, plant cell suspension cultures and excised plant epicotyls

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asnes CF, Wilson L (1979) Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. Anal Biochem 98:64–73

    Article  PubMed  CAS  Google Scholar 

  • Baum P, Thorner J, Honig L (1978) Identification of tubulin from the yeastSaccharomyces cerevisiae Proc Natl Acad Sci USA 75:4962–4966

    Article  PubMed  CAS  Google Scholar 

  • Bergen LG, Borisy GG (1980) Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol 84:141–150

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz SA, Katagiri J, Binder HK, Williams Jr RC (1977) Separation and characterization of microtubule proteins from calf brain. Biochemistry 16:5610–5617

    Article  PubMed  CAS  Google Scholar 

  • Bibring T, Baxendall J, Denslow S, Walker B (1976) Heterogeneity of the alpha subunit of tubulin and the variability of tubulin within a single organism. J Cell Biol 69:301–312

    Article  PubMed  CAS  Google Scholar 

  • Borisy GG, Marcum JM, Olmsted JB, Murphy DB, Johnson KA (1975) Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann NY Acad Sci 253:107–132

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Fistel SH, Marcum JH, Pardue RL (1980) Microtubules in cultured cell; indirect immunofluorescent staining with tubulin antibody. Int Rev Cytol 63:59–95

    Article  PubMed  CAS  Google Scholar 

  • Bryan J (1974) Biochemical properties of microtubules. Fed Proc 33:152–157

    PubMed  CAS  Google Scholar 

  • Bulinsky JC, Borisy GG (1979) Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-assoeiated proteins. Proc Natl Acad Sci USA 76:293–297

    Article  Google Scholar 

  • Burgoyne RD, Cumming R (1983) Characterisation of microtubule-associated proteins at the synapse - absence of MAP–2. Eur J Cell Biol 30:154–158

    PubMed  CAS  Google Scholar 

  • Clayton L, Pogson CI, Gull K (1979) Microtubule proteins in the yeast, Saccharomyces cerevisiae FEBS Lett 106:67–70

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW (1982) Treadmilling of tubulin and actin. Cell 28:689–691

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Hwo S-Y, Kirschner MW (1977) Purification of tau, a microtubule - associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    Article  PubMed  CAS  Google Scholar 

  • Connolly J A, Kalnins VI (1980) The distribution of tau and HMW microtubule - associated proteins in different cell types. Exp Cell Res 127:341–350

    Article  PubMed  CAS  Google Scholar 

  • Connolly JA, Kalnins VI, Cleveland DW, Kirschner MW (1977) Immunofluorescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci USA 74:2437–2440

    Article  PubMed  CAS  Google Scholar 

  • Cote RH, Borisy GG (1981) Head-to-tail polymerization of microtubules in vitro. J Mol Biol 150:577–602

    Article  PubMed  CAS  Google Scholar 

  • Dahl JL, Weibel VJ (1979) Changes in tubulin heterogeneity during postnatal development of rat brain. Biochem Biophys Res Commun 86:822–828

    Article  PubMed  CAS  Google Scholar 

  • De Brabander M, Bulinsky JC, Geuns G, De Mey K, Borisy GG (1981) Immunoelectron microscopic localisation of the 210,000-mol wt microtubule - associated protein in culture cells of primates. J Cell Biol 91:438–445

    Article  PubMed  Google Scholar 

  • DeMey J, Lambert AM, Bajer AS, Moeremans M, De Brabander M (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79:1898–1902

    Article  CAS  Google Scholar 

  • Denoulet P, Edde B, Jeantet C, Gros F (1982) Evolution of tubulin heterogeneity during mouse brain development. Biochimie (Paris) 64:165–172

    CAS  Google Scholar 

  • Detrich III HW, Berkowitz SA, Kim H, Williams Jr RC (1976) Binding of glycerol by microtubule protein. Biochem Biophys Res Commun 68:961–968

    Article  PubMed  CAS  Google Scholar 

  • Detrich III HW, Williams RC (1978) Reversible dissociation of the α βdimer of tubulin. Biochemistry 17:3900–3907

    Article  PubMed  CAS  Google Scholar 

  • Eipper BA (1972) Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc Natl Acad Sci USA 69:2283–2287

    Article  PubMed  CAS  Google Scholar 

  • Eipper BA (1974) Properties of rat brain tubulin. J Biol Chem 249:1407–1416

    PubMed  CAS  Google Scholar 

  • Fine RE (1971) Heterogeneity of tubulin. Nature New Biol 233:283–284

    Article  PubMed  CAS  Google Scholar 

  • Flanagan D, Warr JR (1977) Colchicine binding of a high-speed supernatant of Chlamy-domonas reinhardi FEBS Lett 80:14–18

    Article  PubMed  CAS  Google Scholar 

  • Frigon RP, Timasheff SN (1975) Magnesium-induced self-associations of calf-brain tubulin I. Stoichiomery, Biochemistry 14:4559–4566

    Article  PubMed  CAS  Google Scholar 

  • Fuller GM, Brinkley BR, Boughter JM (1975) Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science (Wash DC) 187:948–950

    Article  CAS  Google Scholar 

  • Fulton C (1982) Two bar mitzvahs for tubulin. Nature 296:308–309

    Article  PubMed  CAS  Google Scholar 

  • Fulton C, Simpson PA (1979) Tubulin pools, synthesis and utilization. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London, pp 117–174

    Google Scholar 

  • George HJ, Misra L, Field DJ, Lee JC (1981) Polymorphism of brain tubulin. Biochemistry 20:2402–2409

    Article  PubMed  CAS  Google Scholar 

  • Gozez I, Barnstable CJ (1982) Monoclonal antibodies that recognise discrete forms of tubulin. Proc Natl Acad Sci USA 79:2579–2583

    Article  Google Scholar 

  • Gozez I, Littauer UZ (1978) Tubulin microheterogeneity increases with rat brain maturation. Nature 276:411–413

    Article  Google Scholar 

  • Gozez I, Sweadner KJ (1981) Multiple tubulin forms are expressed by a single neurone. Nature 294:477–480

    Article  Google Scholar 

  • Gunning BES (1982) The cytokinetic apparatus: its development and spatial regulation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, New York, pp 229–292

    Google Scholar 

  • Gunning BES, Hardham AR (1982) Microtubules. Annu Rev Plant Physiol 33:651–698

    Article  CAS  Google Scholar 

  • Haber JE, Peloquin JG, Halvorson HO, Borisy GG (1972) Coleemid inhibition of cell growth and the characterization of a colcemid-binding activity in Saccharomyces cere- visiae J Cell Biol 55:355–367

    Article  PubMed  CAS  Google Scholar 

  • Heath IB (1975) Colchicine and colcemid binding components of the fungus Saprolegnia ferax Protoplasma 85:177–192

    Article  PubMed  CAS  Google Scholar 

  • Hart JW, Sabnis DD (1973) Colchicine binding protein from phloem and xylem of a higher plant. Planta 109:147–152

    Article  CAS  Google Scholar 

  • Hart JW, Sabnis DD (1976 a) Colchicine binding activity in extracts of higher plants. J Exp Bot 27:1353–1360

    Article  CAS  Google Scholar 

  • Hart JW, Sabnis DD (1976 b) Binding of colchicine and lumicolchicine to components in plant extracts. Phytochemistry 15:1897–1901

    Article  CAS  Google Scholar 

  • Hart JW, Sabnis DD (1976 c) Colchicine and plant microtubules: a critical evaluation. Curr Adv Plant Sci 26:1095–1104

    Google Scholar 

  • Hyams JS (1982) Microtubules. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, New York, pp 31–53

    Google Scholar 

  • Jackson WT (1982) Actomyosin. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, New York, pp 3–29

    Google Scholar 

  • Jameson L, Frey T, Zeeburg B, Dalldorf F, Caplow M (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry 19:2472–2478

    Article  PubMed  CAS  Google Scholar 

  • Job D, Fischer EH, Margolis RL (1981) Rapid disassembly of cold-stable microtubules by calmodulin. Proc Natl Acad Sei USA 78:4679–4682

    Article  CAS  Google Scholar 

  • Johnson KA, Borisy GG (1977) Kinetic analysis of microtubule assembly in vitro. J Mol Biol 117:1–31

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi S, Sobue K (1983) Control of the cytoskeleton by calmodulin and calmodulin-binding proteins. Trends Biochem Sci 8:59–62

    Article  CAS  Google Scholar 

  • Kennett RH (1981) Hybridomas: a new dimension in biological analysis. In Vitro (Rock- ville) 17:1036–1050

    Google Scholar 

  • Kilmartin JV (1981) Purification of yeast tubulin by self assembly in vitro. Biochemistry 20:3629–3633

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E (1982) Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51:219–246

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Timasheff SN (1975) The reconstitution of microtubules from purified calf brain tubulin. Biochemistry 14:5183–5187

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Tweedy N, Timasheff SN (1978) In vitro reconstitution of calf brain microtubules: effects of macromolecules. Biochemistry 17:2783–2790

    Article  PubMed  CAS  Google Scholar 

  • Le Guern C, Pradelles P, Dray F, Jeantet C, Gros F (1977) Radioimmunoassay for tubulin detection. FEBS Lett 84:97–100

    Article  PubMed  Google Scholar 

  • Linskens HF, Wulf N (1953) Über die Trennung und Mitosewirkung der Lumicolchicine. Naturwissenschaften 40:487–488

    Article  CAS  Google Scholar 

  • Lloyd CW (ed) (1982) The cytoskeleton in plant growth and development. Academic Press, New York

    Google Scholar 

  • Lloyd CW, Slabas AR, Powell AJ, Macdonald G, Badley RA (1979) Cytoplasmic microtubules of higher plant cells visualised with antitubulin antibodies. Nature 279:239–241

    Article  Google Scholar 

  • Luck D, Piperno G, Ramanis Z, Huang B (1977) Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. Proc Natl Acad Sci USA 74:3456–3460

    Article  PubMed  CAS  Google Scholar 

  • Luduena RF (1979) Biochemistry of tubulin. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, New York, pp 65–116

    Google Scholar 

  • Margolis RL, Wilson L (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13:1–8

    Article  PubMed  CAS  Google Scholar 

  • Margolis RL, Wilson L (1979) Regulation of the microtubule steady state in vitro by ATP. Cell 18:673–679

    Article  PubMed  CAS  Google Scholar 

  • Mayer RJ, Walker JH (1980) Immunochemical methods in the biological sciences: enzymes and proteins. Academic Press, New York

    Google Scholar 

  • Mizuno K, Koyama M, Shibaoka H (1981) Isolation of plant tubulin from azuki bean epicotyls by ethyl-N-phenyl-carbamate - Sepharose affinity chromatography. J Bio- chem (Tokyo) 89:329–332

    CAS  Google Scholar 

  • Morejohn LC, Fosket DE (1982) Higher plant tubulin identified by selfassembly into microtubules in vitro. Nature 297:4264–428

    Article  Google Scholar 

  • Morgan JL, Rodkey LS, Spooner BS (1977) Quantitation of cytoplasmic tubulin by radioimmunoassay. Science 197:578–580

    Article  PubMed  CAS  Google Scholar 

  • Morgan JL, Holladay CR, Spooner BS (1978) Species-dependent immunological differences between vertebrate brain tubulins. Proc Natl Acad Sci USA 75:1414–1417

    Article  PubMed  CAS  Google Scholar 

  • Murphy DB, Borisy GG (1975) Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sei USA 72:2696–2700

    Article  CAS  Google Scholar 

  • Nieto A, Avila J, Yaldivia MM (1981) Comparative measurement by radioimmunoassay of the brain microtubule-associated protein MAP2. Mol Cell Biochem 37:185–189

    Article  PubMed  CAS  Google Scholar 

  • Okamura S (1980) Binding of colchicine to a soluble fraction of carrot cells grown in suspension culture. Planta 149:350–354

    Article  CAS  Google Scholar 

  • Olmsted JB, Borisy GG (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14:2996–3005

    Article  PubMed  CAS  Google Scholar 

  • Parness J, Horowitz SB (1981) Taxol binds to polymerised tubulin in vitro. J Cell Biol 91:479–487

    Article  PubMed  CAS  Google Scholar 

  • Piperno G, Luck DJL (1977) Micro tubular proteins of Chlamydomonas reinhardtii: an immunochemical study based on the use of an antibody specific for the B-tubulin subunit. J Biol Chem 252:383–391

    PubMed  CAS  Google Scholar 

  • Postingl H, Krauhs E, Little M, Kempf T (1981) Complete amino acid sequence of ß-tubulin from porcine brain. Proc Natl Acad Sci USA 78:4156–4160

    Article  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1982) Extraction and immunochemical assays of a tubulin-like factor in cotton seedlings. Planta 154:402–406

    Article  CAS  Google Scholar 

  • Roberts K, Hyams JS (1979) Microtubules. Academic Press, New York Rosenbaum JL, Binder LI, Granett S, Dentler WL, Snell W, Sloboda R, Haimo L (1975) Directionality and rate of assembly of chick brain tubulin onto pieces of neurotubules, flagellar axonemes and basal bodies. Ann NY Acad Sci 253:147–177

    Google Scholar 

  • Rubin RW, Cousins EH (1976) Isolation of a tubulin-like protein from Phaseolus Phyto-chemistry 15:1837–1839

    CAS  Google Scholar 

  • Runge MS, Detrich III HW, Williams Jr RC (1979) Identification of the major 68.000-dal- ton protein of microtubule preparations as a 10-nm filament protein and its effects on microtubule assembly in vitro. Biochemistry 18:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Sabnis DD (1981) Lumicolchicine as a tool in the study of plant microtubules: some biological effects of sequential products formed during photo transformations of colchicine. J Exp Bot 32:271–278

    Article  CAS  Google Scholar 

  • Sabnis DD, Hart JW (1982) Microtubule proteins and P-proteins. In: Boulter D, Parthier B (eds) Nucleic acids and proteins in plants I. Encyclopedia Plant Physiol, new series, vol 14A. Springer, Berlin Heidelberg New York, pp 401–43

    Chapter  Google Scholar 

  • Scheele RB, Borisy GG (1979) In vitro assembly of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London, pp 175–254

    Google Scholar 

  • Schiff PB, Horowitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5 - triphosphate and mierotubule-associated proteins. Biochemistry 20:3247–3252

    Article  PubMed  CAS  Google Scholar 

  • Schiff PB, Fant J, Horowitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  PubMed  CAS  Google Scholar 

  • Schleicher M, Iverson DB, Van Eldik LJ, Watterson DM (1982) Calmodulin. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London,pp 85–106

    Google Scholar 

  • Sheir-Neiss G, Nardi RY, Gealt MA, Morris WR (1976) Tubulin-like protein from Asperigillus nidulans Biochem Biophys Res Commun 69:285–290

    Article  PubMed  CAS  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–768

    Article  PubMed  CAS  Google Scholar 

  • Sherline P, Schiavone K (1978) High molecular weight MAPs are part of the mitotic spindle. J Cell Biol 77:pp R9-R12

    Article  PubMed  CAS  Google Scholar 

  • Slabas AR, MacDonald G, Lloyd CW (1980) Selective purification of plant proteins which co-polymerise with mammalian microtubules. FEBS Lett 110:77–79

    Article  PubMed  CAS  Google Scholar 

  • Sloboda RD, Dentler WL, Rosenbaum JL (1976) Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry 15:4497–4505

    Article  PubMed  CAS  Google Scholar 

  • Snell WJ, Dentler WL, Haimo LT, Binder LI, Rosenbaum JL (1974) Assembly of chick brain tubulin onto isolated basal bodies of Chlamydomonas reinhardi Science 185:357–360

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht H, Ringel I, Szasz J (1980) The co-polymerization of tubulin and tubulin-colchicine complex in the absence and presence of associated proteins. J Biol Chem 255:9138–9148

    PubMed  CAS  Google Scholar 

  • Valenzuela P, Quiroga M, Zaldivar J, Rutter WJ, Kirschner MW, Cleveland DW (1981) Nucleotide and corresponding amino acid sequences encoded by α and β tubulin ImRNAs. Nature 289:650–655

    Article  PubMed  CAS  Google Scholar 

  • Vallee R (1980) Structure and phosphorylation of microtubule-associated protein 2 (MAP 2). Proc Natl Acad Sci USA 3206–3210

    Google Scholar 

  • Vallee RB (1982) A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol 92:435–442

    Article  PubMed  CAS  Google Scholar 

  • Van der Valk P, Rennie PJ, Connolly JA, Fowke LC (1980) Distribution of cortical microtubules in tobacco protoplasts. An immunofluorescence microscopic and ultrastructural study. Protoplasma 105:27–43

    Google Scholar 

  • Water RD, Kleinsmith LJ (1976) α- and β-tubulin in yeast. Biochem Biophys Res Commun 70:704–708

    Article  PubMed  CAS  Google Scholar 

  • Waxman PG, Del Campo AA, Lowe MC, Hamel E (1981) Induction of polymerization of purified tubulin by sulfonate buffers. Eur J Biochem 120:129–136

    Article  PubMed  CAS  Google Scholar 

  • Webb BC, Wilson L (1980) Cold-stable microtubules from brain. Biochemistry 19:1993–2001

    Article  PubMed  CAS  Google Scholar 

  • Weingarten M, Suter D, Littman D, Kirschner MW (1974) Properties of the depolymerization products of microtubules from mammalian brain. Biochemistry 13:5529–5537

    Article  PubMed  CAS  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1105

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC, Timasheff SN (1970) Aggregation of microtubule subunit protein. Effects of divalent cations, colchicine and vinblastine. Biochemistry 9:4110–4116

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC, Borisy GG, Taylor EW (1968) The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7:4466–4479

    Article  PubMed  CAS  Google Scholar 

  • White E, Tolbert EM, Katz ER (1983) Identification of tubulin in Dictyostelium discoideum: characterization of some unique properties. J Cell Biol 97:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Wick SM, Seagull RW, Osborn M, Weber K, Gunning BES (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89:685–690

    Article  PubMed  CAS  Google Scholar 

  • Williams Jr RC, Detrich HW (1979) Separation of tubulin from microtubule-associated proteins on phosphocellulose. Accompanying alterations in concentrations of buffer components. Biochemistry 18:2499–2503

    Article  PubMed  CAS  Google Scholar 

  • Wilson L (1970) Properties of colchicine binding protein from chick embryo brain. Interactions with Vinca alkaloids and podophyllotoxin. Biochemistry 9:4999–5007

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Freidkin M (1967) The biochemical events of mitosis. The in vivo and in vitro binding of colchicine in grasshopper embryos and its possible relation to inhibition of mitosis. Biochemistry 6:3126–3135

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Bamberg JR, Mizel SB, Gisham LM, Creswell KM (1974) Interaction of drugs with microtubule proteins. Fed Proc 33:158–166

    PubMed  CAS  Google Scholar 

  • Witman GB, Plummer J, Sander G (1978) Chlamydomonas flagellar mutants lacking radial spokes and central tubules: structure, composition and function of specific axonemal components. J Cell Biol 76:729–747

    Article  PubMed  CAS  Google Scholar 

  • Yadav NS, Filner P (1983) Tubulin from cultured tobacco cells: isolation and identification based on similarities to brain tubulin. Planta 157:46–52

    Article  CAS  Google Scholar 

  • Yelton DE, Scharff MD (1981) Monoclonal antibodies: a powerful new tool in biology and medicine. Annu Rev Biochem 50:657–680

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabnis, D.D. (1985). Microtubules. In: Linskens, HF., Jackson, J.F. (eds) Cell Components. Modern Methods of Plant Analysis, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82587-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82587-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82589-7

  • Online ISBN: 978-3-642-82587-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics