Polymeric Electrets

  • W. A. Schneider
  • J. H. Wendorff
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 63)


Many nonconducting polymers are able to store a considerable amount of electrical charge for a long period of time. The stored charges may be real charges, polarization charges or both [1]. Permanently charged materials, which are called electrets, have been utilized in many technical applications such as electroacoustic transducers,radiation devices, electret filters or electrophotography [1]. Since these devices rely on the stability of the electrical properties of the polymers, an understanding of the mechanisms of charge storage and dipolar orientation is essential for their commercial success. It is the aim of this paper to provide a simple framework within for a discussion of electret properties,and to present selected examples showing how polymer structure impacts specific electrical properties such as charge storage, interfacial polarization and dipolar mobility.


Discharge Behavior Interfacial Polarization Charge Storage Pure PVDF Relaxation Time Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.M. Sessler, ed, Electrets (Springer, Berlin 1980)Google Scholar
  2. 2.
    J. van Turnhout, Thermally stimulated discharge of polymer electrets (Elsevier, Amsterdam 1975)Google Scholar
  3. 3.
    J. van Turnhout, “Thermally stimulated discharge of polymer electrets” in Electrets edited by G. M. Sessler (Springer, Berlin 1980)Google Scholar
  4. 4.
    H. Bauser, Kunststoffe 62, 192 (1972)Google Scholar
  5. 5.
    J.C. Maxwell, Electricity and Magnetism (Oxford, University Press 1892)Google Scholar
  6. 6.
    K.W. Wagner, Arch. Elektrotechn. 2, 371 (1914)CrossRefGoogle Scholar
  7. 7.
    R.W. Sillars, J. Instn. Eleetr. Engrs. 80, 378 (1937)Google Scholar
  8. 8.
    W.A. Schneider, J.H. Wendorff, Colloid Polym. Sci. 262, 761 (1984)CrossRefGoogle Scholar
  9. 9.
    L.C.E. Struik, Physical aging in amorphous polymers and other materials (Elsevier, Amsterdam 1978)Google Scholar
  10. 10.
    A.J. Kovacs, J.M. Hutchinson, J. Polym. Sci. Polym. Phys. Ed. 17, 2031 (1979)CrossRefGoogle Scholar
  11. 11.
    A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci. Polym. Phys. Ed. 17, 1097 (1979)CrossRefGoogle Scholar
  12. 12.
    H. Prensen, Diplomarbeit, TH Darmstadt 1984Google Scholar
  13. 13.
    A.J. Lovinger, Macromol. 15, 40 (1982)CrossRefADSGoogle Scholar
  14. 14.
    R.G. Kepler, R.A. Anderson, J. Appl. Phys. 49, 1232 (1978)CrossRefADSGoogle Scholar
  15. 15.
    N. Takahashi, A. Odajirna, Ferroeleetrics 32, 49 (1981)CrossRefGoogle Scholar
  16. 16.
    B.R. Hahn, J.H. Wendorff, Polymer (in press)Google Scholar
  17. 17..
    T. Yamada, T. Kizayama, J. Appl. Phys. 52, 6859 (1981)CrossRefADSGoogle Scholar
  18. 18.
    M.G. Broadhurst, G.T. Davis, J.E. McKinney, R.E. Collins J. Appl. Phys. 49, 4992 (1978)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • W. A. Schneider
    • 1
  • J. H. Wendorff
    • 1
  1. 1.Deutsches Kunstoff-InstitutDarmstadtFed. Rep. of Germany

Personalised recommendations