The Dispersion Effect of Resonance Raman Lines in trans-Polyacetylene

  • H. Kuzmany
  • P. Knoll
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 63)


In Raman experiments the frequency shift ν between incident light and light scattered from a sample is an intrinsic property of the scatterer and thus expected to be independent from the energy of the incident light. Deviations from this behaviour are indicative for sample inhomogeneities as e.g. surface depletion layers in semiconductors [1] or defects in polyenes [2,3]. Amongst the latter,trans-polyacetylene is the most studied and — because of its high crystallinity — the best defined system. In this polymer some of the Raman lines,and particularly those with a large C=C stretch contribution to their normal coordinates,show a frequency upshift Δν of as much as 65 cm−1/eV or even 95 cm−1/eV for the deuterated analogue [4,5]. Since this shift is established by a scattering process with photons of various k-vektors, and thus apparently due to a change of the q-vector of the involved phonons, the effect is somewhat misleadingly called a dispersion. More recently, a careful sample preparation revealed that not the whole Raman line itself shifts with increasing excitation energy, but rather a satellite line developing on the high frequency side of the main line [6]. Fig.1 shows as an example Raman spectra of trans-polyacetylene excited with red and blue laser light and in comparison,a spectrum for a polymer of predominantly cis-geometry. The red light excited spectrum for the trans-polymer shows two narrow and nearly symmetric strong lines at 1078 cm−1 and 1458 cm−1 for the CC-stretching modes.


Raman Line Satellite Peak Satellite Line High Frequency Side Stretch Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Abstreiter, M. Cardona and A. Pinczuk: Topics in Appl. Physics 54, 5 (1984)Google Scholar
  2. 2.
    D. Gill, R.G. Kilponen and L. Rimai: Chem. Phys. Lett. 8, 634 (1971)CrossRefADSGoogle Scholar
  3. 3.
    D.L. Gerrard and W.F. Maddams: Macromolecules 8, 54 (1975)CrossRefADSGoogle Scholar
  4. 4.
    F.B. Schügerl and H. Kuzmany: J. Chem. Phys. 74, 953 (1981)CrossRefADSGoogle Scholar
  5. 5.
    Z. Vardeny, E. Ehrenfreund, O. Brafman and B. Horovitz: Phys. Rev. Lett. 51, 2326 (1983)CrossRefADSGoogle Scholar
  6. 6.
    L.S. Lichtmann, A. Sarhangi and D.B. Fitchen: Chem. Scripta 17, 149 (1981)Google Scholar
  7. 7.
    H. Kuzmany: phys. stat. sol. (b) 97, 512 (1980)CrossRefADSGoogle Scholar
  8. 8.
    H. Kuzmany, P. Surjan and M. Kertesz: Solid State Communic 48, 243 (1983)CrossRefADSGoogle Scholar
  9. 9.
    H. Kuzmany, E.A. Imhoff, D.B. Fitchen and A. Sarhangi: Phys. Rev. B26, 7109 (1982)CrossRefADSGoogle Scholar
  10. 10.
    H. Kuzmany: Pure and Appl. Chem. 57, 235 (1985)CrossRefGoogle Scholar
  11. 11.
    G.P. Brivio and E. Mulazzi: Chem. Phys. Lett. 95, 555 (1983)CrossRefADSGoogle Scholar
  12. 12.
    G.P. Brivio and E. Mulazzi: Phys. Rev. B30, 876 (1984)CrossRefADSGoogle Scholar
  13. 13.
    B. Horovitz, Z. Vardeny, E. Ehrenfreund and O. Brafman: Synthetic Metals 9, 215 (1984)CrossRefGoogle Scholar
  14. 14.
    E. Ehrenfreund, Z. Vardeny and O. Brafman: this volumeGoogle Scholar
  15. 15.
    K. Iwahana and H. Kuzmany: this volumeGoogle Scholar
  16. 16.
    C.R. Fincher, M. Ozaki, M. Tanaka, D. Peebles, D. Lauchlan, A.J. Heeger and A.G. Macdiarmid, Phys. Rev. B20, 1589 (1979)CrossRefADSGoogle Scholar
  17. 17.
    J.H. Edward, W.J. Feast: Polym. Commun. 21, 595 (1980)Google Scholar
  18. 18.
    D.C. Bott, C.K. Chai, D.L. Gerrard, R.H. Weatherhead, D. White and K.P.J. Williams: J. de Physique, C3 44, C3–45 (1983)Google Scholar
  19. 19.
    G. Leising: Polymer Bulletin 11, 401 (1984)CrossRefGoogle Scholar
  20. 20.
    R.H. Friend: this volumeGoogle Scholar
  21. 21.
    P. Knoll and H. Kuzmany: Mol. Cryst. Liqu. Cryst. 106, 317 (1984)CrossRefGoogle Scholar
  22. 22.
    K. Iwahana, P. Knoll and H. Kuzmany: phys. stat. sol., to be publishedGoogle Scholar
  23. 23.
    G. Wieners, M. Monkenbusch and G. Wegner: Berichte Bunsenges. Phys. Chemie 88, 935 (1984)Google Scholar
  24. 24.
    T. Arakawa, Y. Furukawa, H. Takeuchi, I. Harada and H. Shirakawa: Proc. IXth Int. Conf. Raman Spectroscopy Tokyo 1984, Ed: The Chem. Soc. Jap., JapanGoogle Scholar
  25. 25.
    L.S. Lichtmann: Thesis, Cornell University 1981Google Scholar
  26. 26.
    H. Kuzmany, E.A. Imhoff, D.B. Fitchen and A. Sarhangi, Mol. Cryst. Liqu. Cryst. 77, 197 (1981)CrossRefGoogle Scholar
  27. 27.
    I. Harada, Y. Furokawa, M. Tasumi, H. Shirakawa and S. Ikeda: J. Chem. Phys. 73, 4746 (1980)CrossRefADSGoogle Scholar
  28. 28.
    F.B. Schügerl and H. Kuzmany: phys. stat. sol. (b) 111, 607 (1982)CrossRefADSGoogle Scholar
  29. 29.
    E. Faulques, S. Lefrant, F. Rachdi and P. Bernier: Synthetic Metals 9, 53 (1984)CrossRefGoogle Scholar
  30. 30.
    H. Eckhardt: Mol. Cryst. Liqu. Cryst., to be publishedGoogle Scholar
  31. 31.
    G. Zannoni and G. Zerbi: J. of Molecular Structure 100, 505 (1983)CrossRefADSGoogle Scholar
  32. 32.
    H. Kuzmany: J. de Physique 44, C3–255 (1983)Google Scholar
  33. 33.
    P. Surjan, A. Vibôk, H. Kuzmany and K. Iwahana: this volumeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Kuzmany
    • 1
    • 2
  • P. Knoll
    • 1
    • 2
  1. 1.Institut für FestkörperphysikUniversität WienWienAustria
  2. 2.Ludwig Boltzmann Institut für FestkörperphysikWienAustria

Personalised recommendations