Historischer Überblick

  • Wolf-Dieter Heiss
  • Curt Beil
  • Karl Herholz
  • Günter Pawlik
  • Rainer Wagner
  • Klaus Wienhard

Zusammenfassung

Die Diagnose neurologischer Krankheitsbilder wurde durch die Einführung der axialen Röntgen-Computer-Tomographie (CT) revolutioniert (Hounsfield 1973). Mit dieser Methode können alle pathologischen Prozesse erkannt werden, die die Röntgenabsorption des Gewebes verändern. Dazu wird aus vielen Projektionen die Röntgenabsorption kleiner Gewebsvolumina im Computer errechnet und Schnittbilder der untersuchten Körperregion (z.B. des Schädels und des Gehirns) rekonstruiert. Aus mehreren aneinander grenzenden Schnittebenen können damit anatomische Strukturen dreidimensional sichtbar gemacht und pathologische Veränderungen des Aufbaus erkannt werden. Die CT mißt Dichteunterschiede im Gewebe und bildet die Morphologie ab, sie eignet sich aber nur ausnahmsweise (z.B. Durchblutungsmessung mit stabilem Xenon, Gur et al. 1982) zur Darstellung physiologischer Parameter eines Organs. Dies ist der Einsatzpunkt nuklearmedizinischer Methoden, mit denen das Schicksal radioaktiver Isotope im Körper verfolgt werden kann.

Historical Review

Abstract

The diagnosis of neurological diseases has been revolutionized by the introduction of computed axial x-ray tomography (CT) (Hounsfield 1973). This technique allows detection of all pathologic lesions that change the x-ray absorption of tissue. For this purpose, the x-ray absorption of small volumes of tissue is calculated in the computer from a large number of projections, and cross sections through the scanned body regions (e.g., skull and brain) are reconstructed. In this way, anatomical structures can be visualized in a three-dimensional manner from several adjoining planes, and pathologic changes in structure can be recognized. CT measures differences of density in the tissue and visualizes the morphology, but is only suitable in exceptional cases (e.g., for measurement of blood supply with the aid of stable xenon; Gur et al. 1982) for the determination of physiologic parameters of an organ. This is the domain of nuclear medicine, with which it is possible to trace the fate of radioactive isotopes in the body.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur References

  1. Baron JC, Rougemont D, Soussaline F, Bustany P, Crouzel C, Bousser MG, Comar D (1984) Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: A positron tomography study. J Cereb Blood Flow Metab 4:140–149PubMedCrossRefGoogle Scholar
  2. Barrio JR (1983) Biochemical parameters on radiopharmaceutical design. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 65–76Google Scholar
  3. Bohm C, Eriksson L, Bergström M, Litton J, Sundman R, Singh M (1978) A computer assisted ringdetector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci NS 25:624–637CrossRefGoogle Scholar
  4. Brownell GL, Burnham CA, Chesler DA et al. (1977) Transverse section imaging of radionuclide distributions in heart, lung and brain. In: Ter-Pogossian MM, Phelps ME, Brownell GL (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. University Park Press, Baltimore, pp 293–306Google Scholar
  5. Bustany P, Henry JF, Sargent T, Zarifian E, Cabanis E, Collard P, Comar D (1983) Local brain protein metabolism in dementia and schizophrenia: In vivo studies with ’1CL-methionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 208–211Google Scholar
  6. Cho ZH, Chan JK, Eriksson L (1976) Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 23:613–622CrossRefGoogle Scholar
  7. Derenzo SE, Budinger TF, Cahoon JL, Greenberg W L, Hues-man RH, Vuletich T (1979) The Donner 280 crystal high resolution positron tomograph. IEEE Trans Nucl Sci NS 26:2790–2793CrossRefGoogle Scholar
  8. Eriksson L, Bohm C, Kesselberg M et al. (1982) A four ring camera system for emission tomography of the brain. IEEE Trans Nucl Sci NS 29:539–543CrossRefGoogle Scholar
  9. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedCrossRefGoogle Scholar
  10. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. J Cereb Blood Flow Metab 5:163–178PubMedCrossRefGoogle Scholar
  11. Gur D, Wolfson SK, Yonas H et al. (1982) Progress in cerebrovascular disease: Local cerebral blood flow by Xenon enhanced. CT. Stroke 13:750–758PubMedCrossRefGoogle Scholar
  12. Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51PubMedCrossRefGoogle Scholar
  13. Hoffman EJ, Phelps ME, Huang SC, Kuhl DE (1981) A new tomograph for quantitative positron emission computed tomography of the brain. IEEE Trans Nucl Sci 28:99–103CrossRefGoogle Scholar
  14. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). I: Description of system. Br J Radiol 46:1016–1022PubMedCrossRefGoogle Scholar
  15. Huang SC, Phelps ME, Hoffman EJ, Sideris K. Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82PubMedGoogle Scholar
  16. Ido T, Wan CN, Fowler JS, Wolf AP (1977) Fluorination with F7. A convenient synthesis of 2-deoxy-2-fluoro-Dglucose. J Org Chem 42:2341–2342CrossRefGoogle Scholar
  17. Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80: 653–661Google Scholar
  18. Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973) Quantitative section scanning using orthogonal tangent correction. J Nucl Med 14:196–200PubMedGoogle Scholar
  19. Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM (1975) Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res 36: 610–619PubMedGoogle Scholar
  20. Kuhl DE, Edwards RQ, Ricci AR, Yacob RJ, Mich TJ, Alavi A (1976) The mark IV system for radionuclide computed tomography of the brain. Radiology 121:405–413PubMedGoogle Scholar
  21. Muehllehner G, Buchin MP, Dudek JH (1976) Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci 23:528–537CrossRefGoogle Scholar
  22. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224PubMedGoogle Scholar
  23. Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1978) ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med 19:635–647PubMedGoogle Scholar
  24. Raichle ME, Larson KB, Phelps ME, Grubb RL, Welch MJ, Ter-Pogossian MM (1975) In vivo measurement of brain glucose transport and metabolism employing glucose-“C. Am J Physiol 228:1936–1948PubMedGoogle Scholar
  25. Rankowitz S, Robertson JS, Higinbotham WA, Niell AM (1962) Positron scanner for locating brain tumors. IRE Int Cony Rec 9:49–56Google Scholar
  26. Reivich M, Kuhl D, Wolf A et al. (1979) The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137PubMedGoogle Scholar
  27. Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedCrossRefGoogle Scholar
  28. Syrota A, Castaing M, Rougemont D, Berridge M, Baron JC, Bousser MG, Pocidalo JJ (1983) Tissue acid-base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann Neurol 14:419–428PubMedCrossRefGoogle Scholar
  29. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114:89–98PubMedGoogle Scholar
  30. Ter-Pogossian MM, Mullani NA, Hood J, Higgins CS, Currie CM (1978a) A multislice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images. Radiology 128:477–484Google Scholar
  31. Ter-Pogossian MM, Mullani NA, Hood J, Higgins CS, Ficke DC (1978b) Design considerations for a positron emission transverse tomograph (PETT V) for imaging of the brain. J Comput Assist Tomogr 2:539–544CrossRefGoogle Scholar
  32. Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL (1981) Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr 5:227–239PubMedCrossRefGoogle Scholar
  33. Ter-Pogossian MM, Ficke DC, Hood JT Jr, Yamamoto M, Mullani NA (1982) PETT VI: A positron emission tomo-graph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr 6:125–133PubMedCrossRefGoogle Scholar
  34. Thompson CJ, Yamamoto L, Meyer E (1979) Positome II: A high efficiency positron imaging device for dynamic brain studies. IEEE Trans Nucl Sci 26:583–589CrossRefGoogle Scholar
  35. Wagner HN Jr, Burns HD, Dannals RF et al. (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266PubMedCrossRefGoogle Scholar
  36. Welch MJ (ed) (1977) Radiopharmaceuticals and other corn-pounds labeled with short lived radionuclides. Pergamon, OxfordGoogle Scholar
  37. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)2-fluoro-2-deoxyD-glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125PubMedCrossRefGoogle Scholar
  38. Wise RJS, Rhodes CG, Gibbs JM, Hatazawa J, Palmer T, Frackowiak RSJ, Jones T (1983) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14:627–637PubMedCrossRefGoogle Scholar
  39. Wolf AP, Fowler JS (1983) Labeled compounds for positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York, pp 52–64Google Scholar
  40. Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Fein-del W (1977) Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68GA-EDTA and “Kr. J Comput Assist Tomogr 1:43–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Wolf-Dieter Heiss
    • 1
  • Curt Beil
    • 1
  • Karl Herholz
    • 1
  • Günter Pawlik
    • 1
  • Rainer Wagner
    • 1
  • Klaus Wienhard
    • 1
  1. 1.Max-Planck-Institut für neurologische ForschungKöln 91(Merheim)Deutschland

Personalised recommendations