Time Dependent Theory of Electronic Structure and Nuclear Dynamics in DIET

  • E. B. Stechel
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 4)


Some physical processes conceptually lend themselves best to thinking within the time-domain. Direct dissociation or bond-cleavage falls into this category. However, most of quantum dynamics is formulated on the basis of the time-independent Schroedinger equation, since once knowing all the time-independent solutions the time dependence becomes trivial. Implicitly or explicitly solving the time-independent Schroedinger equation is to work within the energy (frequency) domain and to solve within the energy domain is to have knowledge for infinite time. However, many processes to be investigated (DIET included) will be effectively complete in no more than about Δt = 10(−13) sec or less. Hence, individual eigenstates separated by any less than ΔE = −t/Δt = 10(−2)eV cannot be resolved and consequently must be treated on equal footing. For extended systems this is an infinite number of states. Another way of viewing this is to think of energy states as delocalized in time; thus to form a solution which is localized in time many such states must be coherently superimposed. Similarly some physical processes conceptually lend themselves best to thinking within the spatial domain (again DIET falls into this category). However, most of solid state theory is formulated on the basis of band structure calculations, within k-space, which is to solve for inherently spatially delocalized solutions. DIET will be most influenced by the local environment of the desorbing atoms.


Autocorrelation Function Nuclear Motion Impedance Mismatch Tungsten Atom Coverage Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Jennison and E.B. Stechel in Desorption Induced by Electronic Transitions DIET II, Springer-Verlag, Berlin (1985).Google Scholar
  2. 2.
    E.J. Heller: J. Chem. Phys. 62 1544 (1975).CrossRefGoogle Scholar
  3. 3.
    R.D. Coulson and M. Karplus: Chem. Phys. Lett. 90 301 (1982).CrossRefGoogle Scholar
  4. 4.
    C.W. McCurdy and J.L. Turner: J. Chem. Phys. 78: 6773 (1983).CrossRefGoogle Scholar
  5. 5.
    Roger Haydock: Solid State Physics 35 216 (1980).CrossRefGoogle Scholar
  6. 6.
    L.S. Cederbaum and W. Domcke: Adv. I’n Chem. Phys. 36 205 (1977).CrossRefGoogle Scholar
  7. 7.
    E.J. Heller: J. Chem. Phys. 68 2066; 3891 (1978).CrossRefGoogle Scholar
  8. 8.
    E.J. Heller: Acc. of Chem. Res. 14 368 (1981) and references therein.CrossRefGoogle Scholar
  9. 9.
    Volker Heine: Solid State Physics 35 1 (1980).CrossRefGoogle Scholar
  10. 10.
    D.R. Jennison, E.B. Stechel and J.A. Kelber: subm. to Phys. Rev. B.Google Scholar
  11. 11.
    R.R. Whitehead, A. Watt, B.J. Cole and D. Morrison: Adv. Nucl. Phys. 9 123 (1977).Google Scholar
  12. 12.
    H. Mori: Jpn. Prog. Theor. Phys. 34 399 (1965).CrossRefGoogle Scholar
  13. 13.
    R. Haydock, V. Heine and M. J. Ke1Tq: J. Phys. C 8 2591 (1975).CrossRefGoogle Scholar
  14. 14.
    C. Lanczos: J. Res. Natl. Bur. Stand. 45 255 (1950).Google Scholar
  15. 15.
    See for example Andre Nauts and Robert Wyatt: Phys. Rev. Lett. 51 2238 (1983).Google Scholar
  16. 16.
    A.B. Benninghoven, E. Loebach, and N. Treite: J. Vac. Sci. Technol. 9 600 (1972).CrossRefGoogle Scholar
  17. 17.
    W. JeTand and D. Menzel: Surf. Sci. 40 295 (1973);CrossRefGoogle Scholar
  18. R. Jaeger and D. Menzel: Surf. Sci. 63 232 (1977);CrossRefGoogle Scholar
  19. R. Jaeger and D. Menzel: Surf. Sci. 100 561 (1980).CrossRefGoogle Scholar
  20. 18.
    T.E. Madey: Surf. Sci. 36 281 (1973).CrossRefGoogle Scholar
  21. 19.
    H. Niehus: Appl. Surf. Sci. 13 292 (1982).CrossRefGoogle Scholar
  22. 20.
    T.E. Felter, R.A. Barker and F. J. Estrup: Phys. R.v. Lett. 38 1138 (1977);CrossRefGoogle Scholar
  23. R.A. Barker and P.J. Estrup: Phys. Rev. Lett. 41 1307 (1978).CrossRefGoogle Scholar
  24. 21.
    E.B. Stechel and M.L. Knotek, to be submitted to Surf. Sci.Google Scholar
  25. 22.
    M.R. Barnes and R.F. Willis: Phys. Rev. Lett. 41 1727 (1978);Google Scholar
  26. R.F. Willis: Surf. Sci. 89 457 (1979).CrossRefGoogle Scholar
  27. 23.
    David W. Bullett and Marvin L. Cohen: J. Phys. C 10 2083 (1977).CrossRefGoogle Scholar
  28. 24.
    M. Cini: Solid State Commun. 24 681 (1977).CrossRefGoogle Scholar
  29. 25.
    G.A. Sawatsky: Phys. Rev. Lett. 39 504 (1977).CrossRefGoogle Scholar
  30. 26.
    D.R. Jennison and D. Emin: Phys. Rev. Lett. 51 1390 (1983).CrossRefGoogle Scholar
  31. 27.
    J.W. Gadzuk, in Desorption Induced by Electronic Transitions DIET I, ed. by N.H. Tolk, M.M. Traum, J.C. Tully and T.E. Madey, Springer-Verlag, Berlin (1983), p. 4.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • E. B. Stechel
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations