Advertisement

Photodesorption via Laser-Adsorbate Coupling

  • H. J. Kreuzer
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 4)

Abstract

A laser beam impinging onto an adsorbate covered surface of a solid can deposit part or all of its energy (i) into the solid directly, heating it up, rapidly leading to laser-induced thermal desorption [1–6]. (ii) The laser energy can be coupled into the surface bond with which the adsorbed molecule is bound to the surface [7–8]. This process is resonant in character in that the laser frequency must match one with which the adsorbate molecule “vibrates” with respect to the surface. If enough energy can be deposited into the surface bond it might rupture leading to photodesorption by resonant laser-surface bond coupling. It has not been achieved experimentally yet. (iii) The laser can also be coupled resonantly into some internal degree of freedom of the adsorbed molecule, be it an electronic or vibrational mode. Photodesorption of molecules by resonant laser-molecular vibrational coupling, proposed in reference [9], has been realized experimentally in several gas-solid systems.

Keywords

Laser Intensity Thermal Desorption Laser Fluence Surface Bond Brational Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.P. Levine, J.F.Ready, and E.Bernal G., J. Appl. Phys. 38, 331 (1967).CrossRefGoogle Scholar
  2. 2.
    G. Ertl and M. Neumann, Z. Naturforsch. Teil A 27, 1607 (1972).Google Scholar
  3. 3.
    M. Neumann Ph.D. thesis, University of Hannover, 1973 (unpublished).Google Scholar
  4. 4.
    K. Christmann, D. Schober, G. Ertl, and M. Neumann, J. Chem. Phys. 60, 4528 (1974).CrossRefGoogle Scholar
  5. 5.
    G. Wedler and H. Ruhmann, Surf. Sci. 121, 464 (1982).CrossRefGoogle Scholar
  6. 6.
    D.R. Burgess, Jr., R. Viswanathan, I. Hussla, P.C. Stair, and E. Weitz, J. Chem. Phys. 79, 5200 (1983).CrossRefGoogle Scholar
  7. 7.
    J. Lin and T.F. George, Chem. Phys. Lett. 66, 5 (1979); see also: Surf. Sci. 115, 569 (1982).Google Scholar
  8. 8.
    C. Jedrzejek, K.F. Freed, S. Efrima, and H. Metiu, Surf. Sci. 109, 191 (1981).CrossRefGoogle Scholar
  9. 9.
    H.J. Kreuzer and D.N. Lowy, Chem. Phys. Lett. 78, 50–53 (1981).CrossRefGoogle Scholar
  10. 10.
    J. Heidberg, H. Stein, E. Riehl, and A. Nestmann, Z. Phys. Chem.(N.F.) 121, 145 (1980)CrossRefGoogle Scholar
  11. J. Heidberg, H. Stein, and E. Riehl, Phys. Rev. Lett. 49, 666 (1982).CrossRefGoogle Scholar
  12. 11.
    T.J. Chuang and H. Seki, Phys. Rev. Lett. 49, 382 (1982)CrossRefGoogle Scholar
  13. H. Seki and T.J. Chuang, Solid State Comm. 44, 473 (1982);CrossRefGoogle Scholar
  14. T.J. Chuang, J. Electron Spectros. Relat. Phenom. 29, 125 (1983).CrossRefGoogle Scholar
  15. 12.
    T.J. Chuang, Surf. Sci. Reports 3, 1 (1983).CrossRefGoogle Scholar
  16. 13.
    T.J. Chuang and I. Hussla, Phys. Rev. Lett. 52, 2045 (1984).CrossRefGoogle Scholar
  17. 14.
    I. Russia, H. Seki, T.J. Chuang, Z.W. Gortel, H.J. Kreuzer, and P. Piercy, Phys. Rev. B, (in press).Google Scholar
  18. 15.
    J. Heidberg, H. Stein, and H. Weiss (to be published).Google Scholar
  19. 16.
    Z.W. Gortel, H.J. Kreuzer, P. Piercy, and R. Teshima, Phys. Rev. B 27, 5066 (1983).CrossRefGoogle Scholar
  20. 17.
    Z.W. Gortel, H.J. Kreuzer, P. Piercy, and R. Teshima, Phys. Rev. B 28, 2119 (1983).CrossRefGoogle Scholar
  21. 18.
    H.J. Kreuzer and Z.W. Gortel, Phys. Rev. B 29, 6926 (1984).CrossRefGoogle Scholar
  22. 19.
    D. Lucas and G.E. Ewing, Chem. Phys. 58, 385 (1981).CrossRefGoogle Scholar
  23. 20.
    See e.g. P.J. Feibelman, Progr. Surf. Sci. 12, 287 (1982).CrossRefGoogle Scholar
  24. 21.
    P. Piercy, private communication (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. J. Kreuzer
    • 1
  1. 1.Department of PhysicsDalhousie UniversityHalifaxCanada

Personalised recommendations