Electronic Excitations and the Formation of Secondary Ions

  • Z. Sroubek
  • J. Zavadil
  • K. Zdánský
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 4)


The formation and the escape of secondary ions are probably the least well understood aspects of the sputtering process. Numerous theoretical arguments that have been proposed to explain the ionization process in sputtering and possibly also in scattering experiments could be divided into two conceptually different groups. In the first approach the dominant role is played by the time dependent electron coupling between the substrate and the particle whereas the substrate dynamics is completely neglected [1–3]. The second approach stresses the importance of substrate electronic excitations due to the collision cascades induced by ion bombardment and due to the electronic losses of the projectile [4–7]. These two approaches will be referred to, in this paper, as frozen and excited substrate approach, respectively. After a short review of theoretical descriptions of the ionization process, we would like to consider some of the recent experiments in terms of these two competing theoretical concepts.


Velocity Dependence Effective Ionization Collision Cascade Substrate Approach Substrate Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Blandin, A. Nourtier and D.W. Hone:J.Phys.(Paris)37, 369 (1976).CrossRefGoogle Scholar
  2. [2]
    J.K. Nørskov and B.I. Lundqvist:Phys.Rev. B19, 5661 (1979).Google Scholar
  3. [3]
    N.D. Lang:Phys.Rev. B27, 2019 (1983).Google Scholar
  4. [4]
    Z. Jurela:Ing.J.Mass Spectr. and Ion Phys. 12, 13 (1973).Google Scholar
  5. [5]
    P. Williams:Surface Sci. 90, 548 (1979).Google Scholar
  6. [6]
    Z. Šroubek, K. Ždânský and J.Zavadil:Phys.Rev.Lett. 45, 580 (1980).CrossRefGoogle Scholar
  7. [7]
    Z. Šroubek:Nucl.Instr. and Methods 194, 533(1982).Google Scholar
  8. [8]
    Z. Šroubek:Surface Sci. 44, 47(1974)Google Scholar
  9. [9]
    G. Blaise and A. Nourtier:Surface Sci. 90, 495 (1979).Google Scholar
  10. [10]
    W. Bloss and D.W. Hone:Surface Sci. 72, 277 (1978).Google Scholar
  11. [11]
    D.M. Newns, K. Makoshi, R. Brako and J.N.M. van Wunnik: Physica Scripta T6, 5 (1983).CrossRefGoogle Scholar
  12. [12]
    K. Wittmaack:Physica Scripta T6, 71 (1983).CrossRefGoogle Scholar
  13. [13]
    Z. Škroubek:Appl.Phys.Lett. 45, 849(1984).Google Scholar
  14. [14]
    N.D. Lang and J.K. Nerskov:Physica Scripta T6, 15 (1983).CrossRefGoogle Scholar
  15. [15]
    E.G. Overbosch, B. Rasser, A.D. Tenner and J. Los:Surface Sci. 92, 310 (1980).CrossRefGoogle Scholar
  16. [16]
    J. Zavadil:Surface Sci. 143, L383 (1984).Google Scholar
  17. [17]
    Z. Škroubek:Appl.Phys.Lett.42, 514(1983).CrossRefGoogle Scholar
  18. [18]
    Z. Šroubek:Nucl.Instr. and Methods 218, 336(1983).CrossRefGoogle Scholar
  19. [19]
    M.J. Vasile:Nucl.Instr. and Methods 218, 319 (1983).CrossRefGoogle Scholar
  20. [20]
    M.L. Yu and N.D. Lang:Phys.Rev.Lett. 50, 127 (1983).CrossRefGoogle Scholar
  21. [21]
    M.L. Yu:Phys.Rev. B26, 4731 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Z. Sroubek
    • 1
  • J. Zavadil
    • 1
  • K. Zdánský
    • 1
  1. 1.Institute of Radio Engineering and ElectronicsCzechoslovak Academy of SciencesPrague 8Czechoslovakia

Personalised recommendations