Electron and Photon Stimulated Desorption from Organic Molecular Solids: Final State Leading to Desorption

  • J. A. Kelber
  • M. L. Knotek
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 4)

Abstract

The electron and photon stimulated desorption (ESD, PSD) of ions and excited neutrals from molecular solids has recently received considerable attention. Much work has been performed on small molecules of well-known electronic structure, with the objective of elucidating desorption mechanisms in considerable detail. The work of Stulen, et al [1] and STOCKBAUER, et al [2] on hydrogen-bonded films, and that of SAMBE, et al [3] and ROSENBERG, et al [4,5] on a variety of systems should be mentioned in this regard. Another approach has involved the examination of desorption from larger systems such as neopentane and similar alkanes [6]; the objectives here have been the discernment of the general features of the ion desorption mechanisms, the extent to which desorption-inducing excitations are localized within the molecule and the influence of chemical structure on the desorption process. Previous studies in this area on alkanes [6] and partially fluorinated hydrocarbons [7] have revealed that H+, CH3+, F+, and CF+ desorption results from multi valence hole states localized within functional groups (e.g., CH3), and that these multi-hole states result from the decay of C2s(H+, CH3+) or F2s (F+, CF+) holes. These conclusions are generally similar to those drawn from the studies of simple systems [1–5]. The reasons for localization of a multi-hole excitation within a covalent system have been discussed elsewhere [8,9].

Keywords

Hydrocarbon Fluori Tungsten Alkane Cyclohexane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Stulen, Phys. Rev. B (in press)Google Scholar
  2. 2.
    R. Stockbauer, E. Bertel and T. E. Madey in Proceedings of the First International Workshop on Desorption Induced by Electronic Transitions: DIET I. N. H. Tolk, M. M. Traum, J. C. Tulley and T. E. Madey, ed. (Springer-Verlag, NY 1983 ).Google Scholar
  3. 3.
    H. Sambe, M. Yousif and D. E. Ramaker, J. Vac. Sci. and Technol. A2, 1011 (1984).CrossRefGoogle Scholar
  4. 4.
    R. A. Rosenberg, V. Rehn, A. K. Green, P. R. Laroe and C. C. Parks, Phys. Rev. Lett. 51, 915 (1983).CrossRefGoogle Scholar
  5. 5.
    R. A. Rosenberg, P. J. Love, P. K. LaRoe, V. Rehn and C. C. Parks, Phys. Rev. B (in press).Google Scholar
  6. 6.
    J. A. Kelber and M. L. Knotek, Surf. Sci. 121, 1499 (1982).CrossRefGoogle Scholar
  7. 7.
    J. A. Kelber and M. L. Knotek, J. Vac. Sci. and Technol. Al, 1149 (1983).Google Scholar
  8. 8.
    D. R. Jennison, J. A. Kelber and R. R. Rye, Phys. Rev. B25, 1384 (1982).CrossRefGoogle Scholar
  9. 9.
    J. A. Kelber and D. R. Jennison, J. Vac. Sci. and Technol. 20, 848 (1982).CrossRefGoogle Scholar
  10. 10.
    J. A. Kelber and M. L. Knotek, Phys. Rev. B 30, 400 (1982).CrossRefGoogle Scholar
  11. 11.
    M. D. Burrows, S. R. Ryan, W. E. Lamb, Jr., and L. C. McIntyre, Jr., J. Chem. Phys. 71, 4931 (1979).CrossRefGoogle Scholar
  12. 12.
    T. G. Finn, B. L. Carnahan, W. C. Wells and E. C. Zipf, J. Chem. Phys. 63, 1596 (1973).CrossRefGoogle Scholar
  13. 13.
    C. Backy, G. R. Wright, R. R. Tol, and M. J. Vanderwiel, J. Phys. B 8, 3007 (1975).CrossRefGoogle Scholar
  14. 14.
    J. A. Kelber, R. R. Daniels, M. Turowski, G. Margaritondo, N. H. Tolk and J. S. Kraus, Phys. Rev. B30, 4748 (1984).CrossRefGoogle Scholar
  15. 15.
    B. E. Mills and D. A. Shirley, J. Amer. Chem. Soc. 99, 5885 (1977).CrossRefGoogle Scholar
  16. 16.
    J. J. Pireaux, R. Caudano, S. Svensson, E. Basilier, P.-A. Malmqvist, U. Gelius and K. Siegbahn, J. Phys. (Paris) 38, 1213 (1977).CrossRefGoogle Scholar
  17. 17.
    M. B. Robin, Higher Excited States of Polyatomic Molecules (Academia, N. Y., 1974 ).Google Scholar
  18. 18.
    C. R. Brundle and M. B. Robin, J. Chem. Phys. 53, 2196 (1970).CrossRefGoogle Scholar
  19. 19.
    J. Delhalle, S. Delhalle, J. M. Andre, J. J. Pireaux, J. Riga, R. Caudano and J. J. Verbist, J. Electron Spectrosc. Relat. Phenom. 12, 293 (1977).CrossRefGoogle Scholar
  20. 20.
    H. M. Rosenstock, M. B. Wallenstein, A. L. Wahrhafting and H. Eyring, Proc. Natl. Acad. Sci. U.S.A. 38, 667 (1952).CrossRefGoogle Scholar
  21. 21.
    R. A. Rosenberg, V. Rehn, A. K. Green, P. R. LaRoe and C. C. Parks in Desorption Induced by Electronic Transitions: DIET I, N. H. Tolk, M. M. Traum, J. C. Tully and T. E. Madey, ed. (Springer, NY 1983 ).Google Scholar
  22. 22.
    K. Seki, S. Hashimoto, N. Sato, Y. Harada, K. Ishii, H. Inokuchi and J. Kanke, J. Chem. Phys. 66, 3644 (1977).CrossRefGoogle Scholar
  23. 23.
    M. L. Knotek in Proceedings of the First International Workshop on Desorption Induced by Electronic Transitions: DIET I, N. H. Tolk, M. M. Traum, J. C. Tully, and T. E. Madey, ed. (Springer, NY 1983 ).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. A. Kelber
    • 1
  • M. L. Knotek
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations