Mechanisms for Excited Neutral and Negative and Positive Ion Desorption from Surfaces

  • David E. Ramaker
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 4)


Previous work in electron/photon stimulated desorption (ESD/PSD), utilizing a variety of experimental and theoretical tools, has provided considerable progress towards our understanding of the desorption of ions from covalent systems [1–3]. Comparative investigations of dissociation processes in gas phase, condensed (solid), and chemisorbed systems (e.g.,CO(g), CO(s), and CO/Ru (001), or H2O(g), H2O(s), and OH/Ti) have been very helpful in understanding the desorption of ions from molecularly chemisorbed systems [4,5]. Identification of the excited ionic states responsible for the dissociation or desorption, which can often be made by comparison with photoemission and electron-electron coincidence data, reveals that they possess widely different electronic character and hence arise from widely different excitation mechanisms [4,5].


Electron Attachment Antibonding Orbital Electron Impact Excitation Auger Decay Desorption Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Desorption Induced by Electronic Transitions“, N.H. Tolk, M.M. Traum, J.C. Tully, and T.E. Madey, eds., Springer Ser. Chem. Phys., Vol. 24 (Springer-Verlag, Heidelberg, 1983) and references therein.Google Scholar
  2. 2.
    T.E. Madey, D.E. Ramaker, and R. Stockbauer, Ann. Rev. Phys. Chem. 35, 215 (1984).CrossRefGoogle Scholar
  3. 3.
    M.L. Knotek, Physics Today 37 (9), 24 (1984).CrossRefGoogle Scholar
  4. 4.
    D.E. Ramaker, Chem. Phys. 80, 183 (1983).CrossRefGoogle Scholar
  5. 5.
    D.E. Ramaker, J. Chem. Phys. 28, 2998 (1983)CrossRefGoogle Scholar
  6. D.E. Ramaker, J. Vac. Sci. Technol. A1, 1137 (1983)Google Scholar
  7. 6.
    P. Feulner, D. Menzel, H.J. Kreuzer, and Z.W. Gorter, Phys. Rev. Lett. 53, 671 (1984).CrossRefGoogle Scholar
  8. 7.
    R.H. Stulen, J. Vac. Sci. Technol. A2, 1051 (1984).Google Scholar
  9. 8.
    V.M. Bermudez and M.A. Hoffbauer, Phys. Rev. B30, 1125 (1984).Google Scholar
  10. 9.
    Z.X. Liu and D. Lichtman, Surf. Sci. 114, 287 (1982 ).CrossRefGoogle Scholar
  11. 10.
    D.E. Ramaker, to be published.Google Scholar
  12. 11.
    J.C. Tully, Ref. 1, p. 31.Google Scholar
  13. 12.
    D.E. Ramaker, Ref. 1, p. 70.Google Scholar
  14. 13.
    D. Menzel and R. Gomer, J. Chem. Phys. 41, 3311 (1964)CrossRefGoogle Scholar
  15. P.A. Redhead, Can. J. Phys. 42, 886 (1964).CrossRefGoogle Scholar
  16. 14.
    P. Antoniewicz, Phys. Rev. B21, 3811 (1980).CrossRefGoogle Scholar
  17. 15.
    Q.J. Zhang and R. Gomer, Surf. Sci. 109, 567 (1981)CrossRefGoogle Scholar
  18. Q.J. Zhang, R. Gomer, and R.D. Bowman, Surf. Sci. 129, 535 (1983).CrossRefGoogle Scholar
  19. 16.
    M.L. Knotek and P.J. Feibelmann, Phys. Rev. Lett. 40, 964 (1978)CrossRefGoogle Scholar
  20. M.L. Knotek and P.J. Feibelmann, Surf. Sci. 90, 78 (1979)CrossRefGoogle Scholar
  21. M.L. Knotek and P.J. Feibelmann, Phys. Rev. B18, 6531 (1978).CrossRefGoogle Scholar
  22. 17.
    D.E. Ramaker, C.T. White, and J.S. Murday, J. Vac. Sci. Technol. 18, 748 (1981)CrossRefGoogle Scholar
  23. D.E. Ramaker, C.T. White, and J.S. Murday, Phys. Lett. A89, 211 (1982).CrossRefGoogle Scholar
  24. 18.
    D.E. Ramaker, Phys. Rev. B21, 4608 (1980)CrossRefGoogle Scholar
  25. B.I. Dunlap, F.L. Hutson, and D.E. Ramaker, J. Vac. Sci. Technol. 18, 556 (1981).CrossRefGoogle Scholar
  26. 19.
    D.R. Jennison and D. Emin, Phys. Rev. Lett. 51, 1390 (1983).CrossRefGoogle Scholar
  27. 20.
    C.I.M. Beenakker, F.J. de Heer, H.B. Krop, and G.R. Mohlmann, Chem. Phys. 6, 445 (1974).CrossRefGoogle Scholar
  28. 21.
    K.H. Tan, C.É. Brion, Ph.E. Van der Leeuw, and M.J. Van der Wiel, Chem. Phys. 29, 299 (1978).CrossRefGoogle Scholar
  29. 22.
    R.B. Cairns, H. Harrison, and R.I. Schoen, J. Chem. Phys. 55, 4886 (1971).CrossRefGoogle Scholar
  30. 23.
    N. Kouchi, K. Ito, Y. Hatano, N. Oda, and T. Tsuboi, Chem. Phys. 36, 239 (1979).CrossRefGoogle Scholar
  31. 24.
    K. Becker, B. Stumpf, and G. Schulz, Chem. Phys. 53, 31 (1980).CrossRefGoogle Scholar
  32. 25.
    C.R. Claydon, G.A. Segal, and H.S. Taylor, J. Chem. Phys. 54, 3799 (1971).CrossRefGoogle Scholar
  33. 26.
    K. Becker, B. Stumpf, and G. Schulz, Chem. Phys. Lett. 73, 102 (1980).CrossRefGoogle Scholar
  34. 27.
    R.A. Rosenberg, V. Rehn, V.O. Jones, A.K. Green, C.C. Parks, G. Loubiel, and R.H. Stulen, Chem. Phys. Lett. 80, 488 (1981).CrossRefGoogle Scholar
  35. 28.
    E. Bertel, D.E. Ramaker, R.L. Kurtz, R. Stockbauer, and T.E. Madey, submitted for publication.Google Scholar
  36. 29.
    R.H. Prince, G.N. Sears, and F.J. Morgan, J. Chem. Phys. 64, 3978 (1976).CrossRefGoogle Scholar
  37. 30.
    M. Watanabe, H. Kitamura, and Y. Nakai, in “VUV Radiation Physics”, eds., E.E. Koch, R. Haensel, and C. Kunz ( Pergamon Press, New York, 1974 ) p. 70.Google Scholar
  38. 31.
    D. Rapp and D.P. Briglia, J. Chem. Phys. 43, 1480 (1965).CrossRefGoogle Scholar
  39. 32.
    G.J. Schulz, Rev. Mod. Phys. 45, 423 (1973).CrossRefGoogle Scholar
  40. 33.
    F.L. Hutson, D.E. Ramaker, V.M. Bermudez, and M.A. Hoffbauer, to be published in J. Vac. Sci. Technol.Google Scholar
  41. 34.
    M.L. Knotek, V.O. Jones, and V. Rehn, Phys. Rev. Lett. 43, 300 (1979).CrossRefGoogle Scholar
  42. 35.
    M.L. Knotek, Surf. Sci. 101, 334 (1980).CrossRefGoogle Scholar
  43. 36.
    R.L. Stockbauer, D.M. Hanson, S.A. Flodstrom, and T.E. Madey, J. Vac. Sci. Technol. 20, 562 (1982)CrossRefGoogle Scholar
  44. R.L. Stockbauer, D.M. Hanson, S.A. Flodstrom, and T.E. Madey, Phys. Rev. B26, 1885 (1982).CrossRefGoogle Scholar
  45. 37.
    L.A. Grunes, R.D. Leapman, C.N. Wilker, R. Hoffman, and A.B. Kunz, Phys. Rev. B25, 7157 (1982).CrossRefGoogle Scholar
  46. 38.
    T. Kawai, M. Tsukada, H Adachi, C. Satoko, and T. Sakata, Surf. Sci. 81, L640 (1979).CrossRefGoogle Scholar
  47. 39.
    E. Bertel, R. Stockbauer, and T.E. Madey, Surf. Sci. 141, 355 (1984).CrossRefGoogle Scholar
  48. 40.
    F.A. Riddoch and M. Jaros, J. Phys. C: Solid St. Phys. 13, 6181 (1980)CrossRefGoogle Scholar
  49. M. Jaros, F.A. Riddoch, and L.D. Lian, J. Phys. C: Solid St. Phys. 16, L733 (1983).CrossRefGoogle Scholar
  50. 41.
    J.E. Demuth, D. Schmeisser, and Ph. Avouris, Phys. Rev. Lett. 47, 1166 (1981).CrossRefGoogle Scholar
  51. 42.
    É. Bertel, R. Stockbauer, R.L. Kurtz, D.E. Ramaker, and T.E. Madey, to be published.Google Scholar
  52. 43.
    P.H. Dawson and M.L. Den Boer, Surf Sci. 122, 588 (1982).CrossRefGoogle Scholar
  53. 44.
    T.E. Madey, R. Stockbauer, J.F. van der Veen, and D.E. Eastman, Phys. Rev. Lett. 45, 187 (1980).CrossRefGoogle Scholar
  54. 45.
    R. Jaeger, J. Stohr, J. Feldhaus, S. Brennan, and D. Menzel, Phys. Rev. B23, 2102 (1981).CrossRefGoogle Scholar
  55. 46.
    F.P. Netzer, G. Strasser, and J.A.D. Matthew, Phys. Rev. Lett. 51, 211 (1983).CrossRefGoogle Scholar
  56. 47.
    D.A. Shirley, Phys. Rev. B5, 4709 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • David E. Ramaker
    • 1
  1. 1.Department of ChemistryGeorge Washington UniversityUSA

Personalised recommendations