Skip to main content

Peptide Hormone Biosynthesis — Recent Developments

  • Conference paper

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 99))

Abstract

The biosynthesis of peptide hormones is now recognized to be a highly ordered series of events. These biosynthetic events can frequently be localized to a particular subcellular organelle (Fig.1). Each organelle will be discussed in turn, to emphasize the sequential nature of the maturation process. There will be frequent references to the synthesis and processing of the corticotropin/endorphin precursor within the pituitary. This multihormone precursor is often referred to as pro-opiomelanocortin (POMC). POMC is an interesting model to study, since many post-translational modifications are manifest within its maturation products. More intriguing is the fact that processing of this multihormone precursor is tissue specific. In the pars distalis or anterior lobe of the pituitary, ACTH, β-lipotropin (β-LPH), and an N-terminal or 16 K fragment are the major biosynthetic products. In the pars intermedia or intermediate lobe processing is more complete, and α-melanotropin (α-MSH), corticotropin-like intermediate lobe peptide (CLIP), γ-LPH, various forms of acetylated endorphin, γ-MSH, and a shortened N-terminal (16 K1–49) fragment are the major products (Fig.2). More is known of this system than of many others, primarily because pituitary tissue is relatively easy to maintain in culture and lends itself well to classical pulse/chase biosynthetic experiments. Also the AtT-20 mouse pituitary tumour cell line has been an extremely useful and accurate model for anterior pituitary processing (for extensive reviews on this subject see Eipper and Mains 1980; Chrétien and Seidah 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amara SG, Jones V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244.

    Article  PubMed  CAS  Google Scholar 

  • Bause E, Legier G (1981) The role of the hydroxy amino acid in the tryplet sequence. Asn-Xaa-Thr (Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195: 639–644.

    PubMed  CAS  Google Scholar 

  • Bennett HPJ, Lowry PJ, McMartin C, Scott AP (1974) Structural studies of α-melanocyte-stimulating hormone and a novel γ-melanocyte-stimulating hormone for the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias. Biochem J 141: 439–444.

    PubMed  CAS  Google Scholar 

  • Bennett HPJ, Browne CA, Solomon S (1981) Biosynthesis of phosphorylated forms of corticotropin related peptides. Proc Natl Acad Sci USA 78: 4713–4717.

    Article  PubMed  CAS  Google Scholar 

  • Bennett HPJ, Brubaker PL, Seger MA, Solomon S (1983) Human phosphoserine 31 corticotropin1–39: isolation and characterization. J Biol Chem 258: 8108–8112.

    PubMed  CAS  Google Scholar 

  • Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport and release of posterior pituitary hormones. Science 207: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Chang T-L, Loh YP (1984) In vitro processing of pro-opiocortin by membrane-associated and soluble converting enzyme activities from rat intermediate secretory granules. Endocrinology 114: 2092–2099.

    Article  PubMed  CAS  Google Scholar 

  • Chen CLC, Dionne FT, Roberts JL (1983) Regulation of the pro-opiomelanocortin mRNA levels in rat pituitary by dopaminergic comppounds. Proc Natl Acad Sci USA 80: 2211–2215.

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Ann Rev Biochem 47: 251–276.

    Article  PubMed  CAS  Google Scholar 

  • Chrétien M, Seidah NG (1981) Chemistry and biosynthesis of pro-opiomelanocortin. Mol Cell Biochem 34: 101–127.

    Article  PubMed  Google Scholar 

  • Docherty K, Carroll RJ, Steiner DF (1982) Conversion of proinsulin to insulin: involvement of a 31500 molecular weight thiol protease. Proc Natl Acad Sci USA 79: 4613–4617.

    Article  PubMed  CAS  Google Scholar 

  • Dores RM (1982) Evidence for a common precursor for α-MSH and β-endorphin in the intermediate lobe of the pituitary of the reptile Anolis carolinersis. Peptides 3: 925–935.

    Article  PubMed  CAS  Google Scholar 

  • Eberwine JH, Roberts JL (1984) Glucocorticoid regulation of proopiomelanocortin gene transcription in the rat pituitary. J Biol Chem 259: 2166–2170.

    PubMed  CAS  Google Scholar 

  • Eipper BA, Mains RE (1980) Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocrin Rev 1: 1–27.

    Article  CAS  Google Scholar 

  • Eipper BA, Mains RE (1981) Further analysis of post-translational processing of βendorphin in rat intermediate pituitary. J Biol Chem 256: 5689–5695.

    PubMed  CAS  Google Scholar 

  • Eipper BA, Mains RE, Glembotski CC (1983) Identification in pituitary tissue of a peptide α-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper and ascorbic acid. Proc Natl Acad Sci USA 80: 5144–5148.

    Article  PubMed  CAS  Google Scholar 

  • Eskridge EM, Shields D (1983) Cell-free processing and segregation of insulin precursors. J Biol Chem 258: 11487–11491.

    PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1981) The Golgi apparatus (complex) — (1954–1981) — from artifact to center stage. J Cell Biol 91: 77s–103s.

    Article  PubMed  CAS  Google Scholar 

  • Glembotski CC (1981) Subcellar fractionation studies on the post-translational processing of pro-adrenocorticotropic hormone/endorphin in rat intermediate pituitary. J Biol Chem 256: 7433–7439.

    PubMed  CAS  Google Scholar 

  • Glembotski CC (1982) Characterization of the peptide acetyltransferase activity of bovine and rat intermediate pituitaries responsible for the acetylation of β-endorphin and α-melnotropin. J Biol Chem 257: 10501–10509.

    PubMed  CAS  Google Scholar 

  • Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306: 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Hoshina H, Hortin G, Boime I (1982) Rat proopiomelanocortin contains sulfate. Science 217: 63–64.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Blair L, Brake A, Sprague H, Thorner J (1983) Yeast α-factor is processed from a larger precursor polypeptide: The essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32: 839–852.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Schekman R, Thorner J (1984) Glycosylation and processing of prepro-α-factor through the yeast secretory pathway. Cell 36: 309–318.

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi H (1983) Chemistry of pro-opiocortin-related peptides in the salmon pituitary. Arch Biochem Biophys 227: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick DL, Gibson KD, Jones BN (1983) Is adrenal proenkephalin glycosylated? Arch Biochem Biophys 224: 402–404.

    Article  PubMed  CAS  Google Scholar 

  • Kurjan J, Herskowitz I (1982) Structure of a yeast pheremone gene (MF α): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30: 933–943.

    Article  PubMed  CAS  Google Scholar 

  • Lazure C, Seidah NG, Pélprat D, Chrétien M (1983) Proteases and post-translational processing of pro-hormones: A review. Can J Biochem 61: 501–505.

    Article  CAS  Google Scholar 

  • Lennarz WJ (ed) (1980) The biochemistry of glycoproteins and proteoglycans. Plenum, New York.

    Google Scholar 

  • Le Roith D, Shiloach J, Roth J (1982) Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems? Peptides 3: 211–215.

    Article  PubMed  Google Scholar 

  • Lowry PJ, Scott AP (1975) The evolution of vertebrate corticotropin and melanocyte stimulating hormone. Gen Comp Endocrinol 26: 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Lowry PJ, Bennett HPJ, McMartin C, Scott AP (1974) The isolation and amino acid sequence of an adrenocorticotropin from the pars distalis and a corticotropin-like intermediate lobe peptide from the neurointermediate lobe of pituitary of the dogfish Squalus acanthias. Biochem J 141: 427–437.

    PubMed  CAS  Google Scholar 

  • Mains RE, Eipper BA, Glembotski CC, Dores RM (1983) Strategies for the biosynthesis of bioactive peptides. Trends Neurosci 6: 229–235.

    Article  CAS  Google Scholar 

  • McLean C, Lowry PJ (1981) Natural occurance but lack of melanotrophic activity of γ-MSH in fish. Nature 290: 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Meyer DL, Krause E, Dobberstein R (1982) Secretory protein transportation across membranes — the role of the “docking protein”. Nature 297: 647–653.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Matsuo H (1984) A novel protease from yeast with specificity towards paired basic residues. Nature 309: 558–560.

    Article  PubMed  CAS  Google Scholar 

  • Moore DD, Walker MD, Diamond DJ, Conkling MA, Goodman HM (1982) Structure, expression and evolution of growth hormone genes. Recent Prog Horm Res 38: 197–225.

    PubMed  CAS  Google Scholar 

  • Moore H-P., Gumbiner B, Kelly RB (1983) A subclass of proteins and sulphated macromolecules secreted by AtT-20 (mouse pituitary tumor) cells is sorted with adrenocorticotropin. J Cell Biol 97: 810–817.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Terenishi Y, Rakahashi H, Toysota M, Notake M, Nakanishi S, Numa S (1982) Nature 297: 431–434.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki M, Gorbman A (1984) Distribution of immunoreactive sites for several components of pro-opiocortin in the pituitary and brain of adult lamprey Petromyzon marinus and Entospherus tridertatus. Gen Comp Endocrinol 53: 335–352.

    Article  PubMed  CAS  Google Scholar 

  • Scheller RH, Jackson JF, McAllister LB, Rothman BS, Mayeri E, Axel R (1983) A single gene encodes multiple neuropeptides mediating a stereotyped behaviour. Cell 32: 7–22.

    Article  PubMed  CAS  Google Scholar 

  • Seger MA, Bennett HPJ (1983) Specific labelling of pro-opiomelanocortin (POMC)-related peptides with 32P using casein kinase. In: Hruby VH, Rich DH (eds) Peptides: structure and function. Proceedings of the Eighth American Peptide Symposium. Pierce Chemical, Rockford, pp 253–256.

    Google Scholar 

  • Seger MA, Bennett HPJ (1985) Processing of the N-terminal fragment of pro-opiomelanocortin in the intermediate lobe of the pituitary. (to be published).

    Google Scholar 

  • Sly WS, Fischer HD (1982) The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J Cell Biochem 18: 67–85.

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296: 659–660.

    Article  PubMed  CAS  Google Scholar 

  • Uhler M, Herbert E, D’Eushachio P, Ruddle FD (1983) The mouse genome contains two nonallelic proopiomelanocortin genes. J Biol Chem 258: 9444–9453.

    PubMed  CAS  Google Scholar 

  • Walter P, Blobel G (1982) Signal recognition particle contains a 7 S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299: 691–698.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bennett, H.P.J. (1985). Peptide Hormone Biosynthesis — Recent Developments. In: Havemann, K., Sorenson, G., Gropp, C. (eds) Peptide Hormones in Lung Cancer. Recent Results in Cancer Research, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82533-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82533-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15504-1

  • Online ISBN: 978-3-642-82533-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics