Syndromes Associated with Inappropriate Hormone Synthesis by Tumors: An Evolutionary Interpretation

  • D. LeRoith
  • J. Roth
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 99)


A wide range of tumors derived from nonendocrine cells synthesize and secrete inappropriately large amounts of bioactive peptides, producing in their hosts syndromes typical of hormone excess (Odell and Wolfsen 1982; Fmura 1980; Baylin and Mendelsohn 1980). Table 1 lists some of the theories that have been proposed to explain “ectopic hormone production,” the mysterious ability of these tumors to produce hormonal peptides.


Unicellular Organism Luteinizing Hormone Release Hormone Leydig Cell Tumor Ectopic Hormone Median Neurosecretory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acevedo HF, Slifkin M, Pouchet GR, Pardo M (1978) Immunocytochemical localization of a choriogonadotropin-like protein in bacteria isolated from cancer patients. Cancer 41: 1217–1219.PubMedCrossRefGoogle Scholar
  2. Backus BT, Affronti LF (1981) Tumor-associated bacteria capable of producing a human choriogonadotropin like substance. Infect Immun 32: 1211–1215.PubMedGoogle Scholar
  3. Baylin SB, Mendelsohn G (1980) Ectopic (inappropriate) hormone production by tumors: mechanisms involved and the biological and clinical implications. Endocr Rev 1: 45–77.PubMedCrossRefGoogle Scholar
  4. Berelowitz M, LeRoith D, Von Schenk H, Newgard C, Szabo M, Frohman LA, Shiloach J, Roth J (1982) Somatostatin-like immunoactivity and biological activity is present in T. pyriformis, a ciliated Protozoan. Endocrinology 110: 1939–1944.PubMedCrossRefGoogle Scholar
  5. Bhatnagar YM, Carraway R (1981) Bacterial peptides with C-terminal similarities to bovine neurotensin. Peptides 2: 51–59.PubMedCrossRefGoogle Scholar
  6. Birch NP, Christie DL, Renwick AGC (1984) Proinsulin-like material in mouse fetal brain cell cultures. FEBS Lett 168: 299–302.PubMedCrossRefGoogle Scholar
  7. Bonner JT (1971) Aggregation and differentiation in the cellular slime molds. Annu Rev Microbiol 25: 75–92.PubMedCrossRefGoogle Scholar
  8. Braunstein GD, Rasor J, Wade ME (1975) Presence in normal human testes of a chorionic-gonadotropin-like substance distinct from human lutenizing hormone. N Engl J Med 293: 1339–1343.PubMedCrossRefGoogle Scholar
  9. Breslau NA, McGuire JL, Zerwekh JE, Frenkel EP, Pak CYC (1984) Hypercalcemia associated with increased serum calcitriol levels in three patients with lymphoma. Ann Intern Med 100: 1–7.PubMedGoogle Scholar
  10. Budd GC, Pansky B, Cordell B (1983) Insulin or insulin-like peptides in the pituitary gland. Cell Biol (abstract) 83.Google Scholar
  11. Chen HC, Hodgen GD, Matsuura S, Lin SJ, Gross E, Reichert LE, Birken S, Canfield RE, Ross GT (1976) Evidence for a gonadotropin from nonpregnant subjects that has physical, immunological and biological similarities to human choronic gonadotropin. Proc Natl Acad Sci USA 73: 2885–2888.PubMedCrossRefGoogle Scholar
  12. Ciejek E, Thorner J, Geier M (1977) Solid phase peptide synthesis of α factor, a yeast mating pheromone. Biochem Biophys Res Commun 78: 952–961.PubMedCrossRefGoogle Scholar
  13. Deftos L, LeRoith D, Shiloach J, Roth J (1984) Salmon calcitonin-like immunoactivity in extracts of Tetrahymena pyriformis. Horm Metab Res (in press).Google Scholar
  14. Dunny GM, Craig RA, Carron RL, Clewell DB (1979) Plasmid transfer in Streptococcus fecalis: production of multiple sex pheromones by recipients. Plasmid 2: 454–465.PubMedCrossRefGoogle Scholar
  15. Duve H, Thorpe A (1979) Immunofluorescent localization of insulin-like material in the median neurosecretory cells of the blowfly Calliphora vomitoria. Cell Tissue Res 200: 187–191.PubMedCrossRefGoogle Scholar
  16. Duve H, Thorpe A, Lazarus NR (1979) Isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly Calliphora vomitoria. Biochem J 284: 21–27.Google Scholar
  17. El-Salhy M, Abou-El-Ela R, Falkmer S, Grimelius L, Wilander E (1980) Immunohistochemical evidence of gastro-enteropancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteron insect, the hoverily, Eristalis aeneus. Reg Pept 1: 187–204.CrossRefGoogle Scholar
  18. Falkmer S, Emdin S, Havu N, Lundgren G, Marques M, Ostberg Y, Steiner DF, Thomas NW (1973) Insulin in invertebrates and cyclostomes. Am Zool 13: 625–628.Google Scholar
  19. Falkmer S, Carraway RE, El-Salhy M, Emden SO, Grimelius L, Rehfeld JF, Reinecke M, Schwartz TW (1981) Phylogeny of the gastroenteropancreatic neuroendocrine system: a review. In: Grossman MI, Brazier AB, Lechago J (eds) Cellular basis of chemical messengers in the digestive system. Academic, New York, pp 21–42.Google Scholar
  20. Fritsch HAR, Van Noorden S, Pearse AGE (1976) Cytochemical and immunofluorescence investigations of insulin-like producing cells in the intestine of Mytelus edulis (Bivalvia). Cell Tissue Res 165: 365–369.PubMedCrossRefGoogle Scholar
  21. Gorden P, Hendricks CM, Kahn CR, Megyesi K, Roth J (1981) Hypoglycemia associated with non-islet-cell tumor and insulin-like growth factors. N Engl J Med 305: 1452–1455.PubMedCrossRefGoogle Scholar
  22. Imura H (1980) Ectopic hormone syndromes. Clin Endocrinol Metab 9: 235–260.PubMedCrossRefGoogle Scholar
  23. Josefsson JO, Johansson P (1979) Naloxone-reversible effects of opioids on pinocytosis in Amoeba proteus. Nature 282: 78–80.PubMedCrossRefGoogle Scholar
  24. Kahn CR (1980) The riddle of tumor hypoglycemia revisited. Clin Endocrinol Metab 9: 335–360.PubMedCrossRefGoogle Scholar
  25. Larsson LI (1978) Distribution of ACTH-like immunoreactivity in rat brain and gastrointestinal tract. Histochemistry 55: 225–233.PubMedCrossRefGoogle Scholar
  26. LeRoith D, Shiloach J, Roth J, Lesniak MA (1980) Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular organisms. Proc Natl Acad Sci USA 77: 6184–6188.CrossRefGoogle Scholar
  27. LeRoith D, Shiloach J, Roth J, Lesniak MA (1981) Insulin or a closely related molecule is native to Escherichia coll J Biol Chem 256: 6533–6536.PubMedGoogle Scholar
  28. LeRoith D, Liotta AS, Roth J, Shiloach J, Lewis ME, Pert CB, Krieger DT (1982 a) Corticotropin and β-endorphin-like materials are native to unicellular organisms. Proc Natl Acad Sci USA 79: 2086–2090.PubMedCrossRefGoogle Scholar
  29. LeRoith D, Shiloach J, Roth J (1982b) Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems? Peptides 3: 211–2154.CrossRefGoogle Scholar
  30. LeRoith D, Hendricks SA, Lesniak MA, Rishi S, Becker KL, Havrankova J, Rosenzweig JL, Brownstein MJ., Roth J (1983 a) Insulin in brain and other extrapancreatic tissues of vertebrates and non-vertebrates. Adv Metab Disord 10: 303–340.Google Scholar
  31. LeRoith D, Berelowitz M, Pickens W, Crosby LK, Shiloach J (1983 b) Somatostatin-related material in E. coli: evidence for two molecular forms. Clin Res 31: 739 A (abstract).Google Scholar
  32. Lim ATW, Lolait SJ, Barlow JW, Autelitano DJ, Toh BH, Boublik J, Abraham J, Johnston CI, Funder JW (1984) Immunoreactive ariginine-vasopressin in Brattleboro rat ovary. Nature 310: 61–63.PubMedCrossRefGoogle Scholar
  33. Liotta AS, Osathanondh R, Ryan KJ, Kreiger DT (1977) Presence of corticotropin in human placenta: demonstration of in vitro synthesis. Endocrinology 101: 1552–1558.PubMedCrossRefGoogle Scholar
  34. Livingston V, Livingston AM (1974) Some cultural, immunological and chemical properties of Progenitor cryptocides. Trans NY Acad Sci 36: 569–582.CrossRefGoogle Scholar
  35. Loumaye E, Thorner J, Catt KJ (1982) Yeast mating pheromone activates mammalian gonadotrophs: evolutionary conservation of a reproductive hormone. Science 218: 1324–1325.CrossRefGoogle Scholar
  36. Macchia V, Bates RW, Pastan I (1967) Purification and properties of thyroid stimulating factor isolated from Clostridium perfringens. J Biol Chem 242: 3726–3730.PubMedGoogle Scholar
  37. Maruo T, Cohen H, Segal SJ, Koide SS (1979) Production of choriogonadotropin-like factor by a microorganism. Proc Natl Acad Sci USA 76: 6622–6626.PubMedCrossRefGoogle Scholar
  38. Megyesi K, Kahn CR, Roth J, Gorden P (1974) Hypoglycemia in association with extrapancreatic tumors: demonstration of elevated plasma NSILA-S by a new radioreceptor assay. J Clin Endocrinol Metab 38: 931–934.PubMedCrossRefGoogle Scholar
  39. Metz SA, McRae JR, Robertson RP (1981) Prostaglandins as mediators of paraneoplastic syndromes: review and update. Metabolism 30: 299–316.PubMedCrossRefGoogle Scholar
  40. Murakami K, Taniguchi H, Baba S (1982) Presence of insulin-like immunoreactivity and biosynthesis in rat and human parotid gland. Diabetologia 22: 358–362.PubMedCrossRefGoogle Scholar
  41. Nussey SS, Ang VTY, Jenkins JS, Chowdrey HS, Bisset GW (1984) Brattleboro rat adrenal contains vasopressin. Nature 310: 64–66.PubMedCrossRefGoogle Scholar
  42. Odell WD, Wolfsen AR (1978) Hormones from tumors: are they ubiquitous? Am J Med 68: 317–318.CrossRefGoogle Scholar
  43. Odell WD, Wolfsen AR (1982) Humoral syndromes associated with cancer: ectopic hormone production. Prog Clin Cancer 8: 57–74.PubMedGoogle Scholar
  44. Perez-Cano R, Murphy PK, Girgis SI, Arnett TR, Blankharn I, MacIntyre I (1982) Unicellular organisms contain a molecule resembling human calcitonin. Endocrinology 110: 673 (abstract).Google Scholar
  45. Plisetskaya E, Kazakov VK, Solititakaya L, Leibson LG (1978) Insulin producing cells in the gut of freshwater bivalve molluscs Anodonta cygnea and Unio pictorum and the role of insulin in the regulation of their carbohydrate metabolism. Gen Comp Endocrinol 35: 133–45.PubMedCrossRefGoogle Scholar
  46. Ratcliff JG, Knight RA, Besser GM, Landon J, Stansfeld AG (1972) Tumor and plasma ACTH concentration of patients with and without the ectopic ACTH syndrome. Clin Endocrinol 1: 27–44.CrossRefGoogle Scholar
  47. Robertson GL (1978) Cancer and inappropriate antidiuresis. In: Ruddon RW (ed) Biological markers of neoplasia: basic and applied aspects. Elsevier North Holland, Amsterdam, pp 277–293.Google Scholar
  48. Rodam SB, Insogna KL, Vignery AMC, Stewart AF, Broadus AE, D’Souza SM, Bertolini DR, Mun-dy GR, Bodam GA (1982) Factors associated with humoral hypercalcemia of malignancy stimulate adenylate cyclase in osteoblastic cells. J Clin Invest 72: 1511–1515.CrossRefGoogle Scholar
  49. Rosenzweig JL, LeRoith D, Lesniak MA, MacIntyre I, Sawyer WH, Roth J (1983) Two distinct insulins in the guinea pig: the broad relevance of these findings to evolution of peptide hormones. Fed Proc 42: 2608–2614.PubMedGoogle Scholar
  50. Roth J, LeRoith D, Shiloach J, Rosenzweig JL, Lesniak MA, Havrankova J (1982) The evolutionary origins of hormones, neurotransmitters. N Engl J Med 306: 523–527.PubMedCrossRefGoogle Scholar
  51. Sarker N, Langley D, Paulus H (1979) Studies on the mechanism and specificity of inhibiton of ribonucleic acid polymerase by linear gramicidin. Biochemistry 18: 4536–4541.CrossRefGoogle Scholar
  52. Schwabe C, LeRoith D, Thompson RP, Shiloach J, Roth J (1983) Relaxin extracted from protozoa (Tetrahymena pyriformis). J Biol Chem 258: 2778–2781.PubMedGoogle Scholar
  53. Spiegel AM, Saxe AW, Deftos LJ, Brennan MF (1983) Humoral hypercalcenia caused by a rat Leydig-cell tumor is associated with suppressed parathyroid hormone secretion and increased urinary cAMP excretion. Horm Metab Res 15: 299–304.PubMedCrossRefGoogle Scholar
  54. Stephens K, Hegeman GD, White D (1982) Pheromone produced by the Myxobacterium Stigmatella aurantiaca. J Bacteriol 149: 739–747.PubMedGoogle Scholar
  55. Tam CS, Heersche JNM, Santoa A, Spiegel AM (1984) Skeletal response in rats following the implantation of hypercalcemia-producing Leydig cell tumors. Metabolism 33: 50–53.PubMedCrossRefGoogle Scholar
  56. Taylor SI, Grunberger G, Marcus-Samuels B, Underhill LH, Dons RF, Ryan J, Rodden RF, Rupe CE, Gorden P (1982) Hypoglycemia associated with antibodies to the insulin receptor. N Engl J Med 307: 1422–1426.PubMedCrossRefGoogle Scholar
  57. Younes MA, D’Agnostino JB, Fazier ML, Besch PK (1984) mRNA in human placenta homologous to insulin mRNA. Diabetes [Suppl] 1: 161 (abstract).Google Scholar
  58. Zerbe RL, Robertson GL (1981) Arginine Vasotocin: identification and biological actions in mammals. In: Fotherby K, Pal SB (eds) Hormones in normal and abnormal tissues, vol 2. de Gruyter, New York pp 165–186.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • D. LeRoith
    • 1
  • J. Roth
    • 1
  1. 1.Diabetes BranchNIASSKBethesdaUSA

Personalised recommendations