Skip to main content

Total Energies and Atom Locations at Solid Surfaces

  • Chapter
The Structure of Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 2))

Abstract

With the advent of modern computers it is now possible to compute total energies at surfaces from first principles. However, the kinds of problems that can currently be dealt with are quite restrictive. A brief overview of such calculations, as well as the recently discovered universality in binding energy relations will be given. We show that it is now possible to calculate surface or cleavage energies of transition metals from first principles. This is done via our self-consistent local orbital (SCLO) method. The total energies of metal films of many thicknesses, for example of three, five, seven, and nine layers, are first computed; a bulk and surface energy are then derived from a least-squares linear plot of total energy versus film thickness. In the examples of copper(100) and silver(100), the deviation from the line is less than 0.1 eV. This shows the accuracy of our method since the slope of the line (the bulk energy) is four Orders of magnitude larger than the intercept (twice the surface energy). Good agreement with experiment is obtained for all metals considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Feibelman, D.R. Hamann, F.J. Himpsel: Phys. Rev. B22, 1734 (1980);

    Google Scholar 

  2. M.J. Cardillo, G.E. Becker, D.R. Hamann, J.A. Serri, L. Whitman, L.F. Mattheiss: Phys. Rev. B28, 494 (1983)

    Google Scholar 

  3. R.N. Barnett, U. Landman, C.L. Cleveland: Phys. Rev. B28, 1685 (1983)

    Google Scholar 

  4. K.-P. Bohnen: Phys. Rev. B29, 1045 (1984)

    Google Scholar 

  5. J.H. Rose, J.R. Smith, J. Ferrante: Phys. Rev. B28, 1835 (1983);

    Google Scholar 

  6. J. Ferrante, J.R. Smith: Phys. Rev. B (to be published)

    Google Scholar 

  7. I.P. Batra: Phys. Rev. B29, 7108 (1984)

    Google Scholar 

  8. C. Umrigar, J.W. Wilkins: Bull. Am. Phys. Soc. 28, 538 (1983)

    Google Scholar 

  9. In fact, nucleons and electron-hole liquids appear to belong to the same universality class as simple and transition metals. See J.H. Rose, J.P. Vary, J.R. Smith: Phys. Rev. Lett. 53, 344 (1984)

    Article  CAS  Google Scholar 

  10. J.P. Perdew, J.R. Smith: Surf. Sci. 141, L295 (1984)

    Article  CAS  Google Scholar 

  11. K.-P. Bohnen, S.C. Ying: Phys. Rev. B22, 1806 (1980);

    Google Scholar 

  12. V. Sahni, J.P. Perdew, J. Gruenebaum: Phys. Rev. B23, 6512 (1981)

    Article  CAS  Google Scholar 

  13. B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends, D. Post: Phys. Rev. B27, 2132 (1983). These authors do not compute cleavage energies, but have computed surface tensions for clusters self-consistently

    Google Scholar 

  14. J. A. Appelbaum, D.R. Hamann: Solid State Commun. 27, 881 (1978). These authors stated a number for the surface energy of Cu(lll), but did not describe how they computed the total energy, although the electronic structure was computed self-consistently

    Article  CAS  Google Scholar 

  15. J.R. Smith, J.G. Gay, F.J. Arlinghaus: Phys. Rev. B21, 2201 (1981)

    Google Scholar 

  16. See, for example, the total energy formulation in J. Harris, R.O. Jones, J.E. Mueller: J. Chem. Phys. 75, 3904 (1981)

    CAS  Google Scholar 

  17. J.R. Smith, J.G. Gay, R. Richter: To be published

    Google Scholar 

  18. P.J. Feibelman: Phys. Rev. B27, 1991 (1983);

    Google Scholar 

  19. P.J. Feibelman, D.R. Hamann: Phys. Rev. B29, 6463 (1984). Here the work function can vary by 0.2 eV for slabs thicker than 3 planes

    Google Scholar 

  20. U. von Barth, C.D. Gelatt: Phys. Rev. B21, 2232 (1981)

    Google Scholar 

  21. H. Wawre: Z. Metallde 66, 375 (1974)

    Google Scholar 

  22. J. Sokolov, F. Jona, P.M. Marcus: Solid State Commun. 49, 307 (1984)

    Article  CAS  Google Scholar 

  23. V. Sahni: Private communication

    Google Scholar 

  24. S.H. Vosko, L. Wilk, M. Nusair: Can. J. Phys. 58, 1700 (1980) from a calculation by D.M. Ceperley, B.J. Alder: Phys. Rev. Lett. 45, 566 (1980)

    Article  Google Scholar 

  25. from a calculation by D.M. Ceperley, B.J. Alder: Phys. Rev. Lett. 45, 566 (1980)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, R., Smith, J.R., Gay, J.G. (1985). Total Energies and Atom Locations at Solid Surfaces. In: Van Hove, M.A., Tong, S.Y. (eds) The Structure of Surfaces. Springer Series in Surface Sciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82493-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82493-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82495-1

  • Online ISBN: 978-3-642-82493-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics