Atomic and Electronic Structure of p (1 × 1) Overlayers of Sb on the (110) Surfaces of III-V Semiconductors

  • C. B. Duke
  • C. Mailhiot
  • A. Paton
  • K. Li
  • C. Bonapace
  • A. Kahn
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 2)

Abstract

The prediction of the atomic geometries of overlayers for compound semiconductors is a topic of considerable current interest, especially with regard to the mechanisms of Schottky barrier formation and the growth (e.g., by molecular-beam epitaxy) of multilayer heterojunction systems [50.1]. Moreover, such geometries are now being determined experimentally, for example by elastic low-energy electron diffraction (ELEED) intensity analyses [50.2, 3]. Thus, an opportunity exists to develop and test predictive models of the geometrical and electronic structure of ordered overlayers on semiconductor surfaces. In this contribution we present a tight-binding calculation of the atomic geometries and surface-state eigenvalue spectra of p(l × 1) overlayers of Sb on the (110) surfaces of III-V semiconductors which predicts accurately the measured structures and surface-state spectra of these surfaces. The particular systems which we examined are ordered (l × l) saturated monolayers of Sb on the (110) surfaces of GaP, GaAs, GaSb, InP, InAs and InSb. A schematic diagram of the experimental surface atomic geometry is given in Fig.50.1.

Keywords

GaAs GaSb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 50.1
    L.J. Brillson: Surf. Sci. Repts. 2, 123 (1982)CrossRefGoogle Scholar
  2. 50.2
    A. Kahn: Surf. Sci. Repts. 3, 193 (1983)CrossRefGoogle Scholar
  3. 50.3
    C.B. Duke: Adv. Ceram. 6, 1 (1983)Google Scholar
  4. 50.4
    D.J. Chadi: Phys, Rev. Lett. 41, 1062 (1978); Phys. Rev. B19, 2074 (1979)CrossRefGoogle Scholar
  5. 50.5
    R.E. Allen: Phys. Rev. B19, 917 (1979); B20, 1415 (1979)Google Scholar
  6. 50.6
    R.B. Beres, R.E. Allen, J.D. Dow: Phys. Rev. B26, 769 (1982)Google Scholar
  7. 50.7
    P. Vogl, H.P. Hjalmarson, J.D. Dow: J. Phys. Chem. Solids 44, 365 (1983)CrossRefGoogle Scholar
  8. 50.8
    C. Mailhiot, C.B. Buke, D.J. Chadi: Surf. Sci. (submitted)Google Scholar
  9. 50.9
    C.B. Duke, A. Paton, W.K. Ford, A. Kahn, J. Carelli: Phys. Rev. B26, 803 (1982)Google Scholar
  10. 50.10
    C.B. Duke, C. Mailhiot, A. Paton, A. Kahn: UnpublishedGoogle Scholar
  11. 50.11
    C.M. Bertoni, C. Calandra, F. Manghi, E. Molinari: Phys. Rev. B27, 1251 (1983)Google Scholar
  12. 50.12
    C. Mailhiot, C.B. Duke, D.J. Chadi: Phys. Rev. Lett, (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • C. B. Duke
    • 1
  • C. Mailhiot
    • 1
  • A. Paton
    • 1
  • K. Li
    • 2
  • C. Bonapace
    • 2
  • A. Kahn
    • 2
  1. 1.Xerox Webster Research CenterWebsterUSA
  2. 2.Department of Electrical Engineering and Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations