Competing Reconstruction Mechanisms in H/Ni(110)

  • R. J. Behm
  • K. Christmann
  • C. Ertl
  • V. Penka
  • R. Schwankner
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 2)


The mechanisms of the hydrogen-induced reconstructions of Ni(110) have been investigated. Below ~180 K a (2 × 1) lattice gas structure with өH=1.0 transforms into a 2D-(1 × 2) structure during addition of hydrogen up to өH =1.5. The phase transition, which involves a reconstruction of the surface, exhibits first-order behavior with no apparent activation energy. In contrast, at T >180 K and already at low coverages, an activated, local transformation into a more stable ID structure (’streaked structure’) occurs. A lattice distortion to optimize the local metal structure with respect to the metal-ad-sorbate bond and thus increase the binding energy is introduced as a general model for many such adsorbate-induced surface phase transformations.


Adsorption Energy Activation Barrier Critical Coverage Integral Order Reconstruction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 40.1
    L.D. Roelofs, P.J. Estrup: Surf. Sci. 125, 51 (1983)CrossRefGoogle Scholar
  2. 40.2
    K. Christmann, V. Penka, R.J. Behm, F. Chehab, G. Ertl: Solid State Commun. (in press)Google Scholar
  3. 40.3
    V. Penka, R.J. Behm, K. Christmann, G. Ertl, R. Schwankner: In preparationGoogle Scholar
  4. 40.4
    V. Penka, K. Christmann, G. Ertl: Surf. Sci. 136, 307 (1984)CrossRefGoogle Scholar
  5. 40.5
    K.H. Rieder, T. Engel: Phys. Rev. Lett. 43, 373 (1979)CrossRefGoogle Scholar
  6. K.H. Rieder, T. Engel: Phys. Rev. Lett. 45, 824 (1980)CrossRefGoogle Scholar
  7. T. Engel, K.H. Rieder: Surf. Sci. 109, 140 (1984)CrossRefGoogle Scholar
  8. 40.8
    W. Reimer, W. Moritz, R.J. Behm, G. Ertl, V. Penka: To be publishedGoogle Scholar
  9. 40.7
    N.J. DiNardo, E.W. Plummer: J. Vac. Sci. Technol. 20, 890 (1982)CrossRefGoogle Scholar
  10. 40.8
    T.E. Jackman, J.A. Davies, P.R. Norton, W.N. Unertl, K. Griffiths: Surf. Sci. 141, L313 (1984)CrossRefGoogle Scholar
  11. 40.9
    B. Mutaftschiev (ed.):Interfacial Aspects of Phase Transformations, Nato Adv. Study Inst. Series, B (Reidel, Dordrecht 1982)Google Scholar
  12. 40.10
    K. Christmann, O. Schober, G. Ertl, M. Neumann: J. Chem. Phys. 60, 4528 (1974)CrossRefGoogle Scholar
  13. 40.11
    R.A. Cowley: Adv. Phys. 29, 1 (1980)CrossRefGoogle Scholar
  14. 40.12
    R.F. Willis: In Proc. Many Body Phenomena at Surfaces, ed. by D.C. Langreth, D. Newns, H. Suhl (Academic, New York 1984)Google Scholar
  15. 40.13
    R.A. Barker, P.J. Estrup: J. Chem. Phys. 74, 1442 (1981);CrossRefGoogle Scholar
  16. D.A. King, G. Thomas: Surf. Sci. 92, 201 (1980) and references thereinCrossRefGoogle Scholar
  17. 40.14
    D. Wolf, H. Jagodzinski, W. Moritz: Surf. Sci. 77, 283 (1978)CrossRefGoogle Scholar
  18. 40.15
    I. Terakura, K. Terakura, N. Hamada: Surf. Sci. 111, 479 (1981)CrossRefGoogle Scholar
  19. 40.16
    R.J. Behm, P.A. Thiel, P.R. Norton, G. Ertl: J. Chem. Phys. 78, 7437, 7448 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. J. Behm
    • 1
  • K. Christmann
    • 1
  • C. Ertl
    • 1
  • V. Penka
    • 1
  • R. Schwankner
    • 1
  1. 1.Universität MünchenMünchen 2Germany

Personalised recommendations