On some Transition Processes in Spatial Flows with a Transversal Velocity Gradient

  • V. Ja. Shkadov
  • E. A. Demekhin
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Nonstationary development and the limiting form for waves in viscous fluid flows under the action of gravitational and capillary forces are investigated. Instability, bifurcation and transition are considered within the framework of Galerkin multi-mode approximations.


Wave Solution Homoclinic Orbit Solitary Wave Solution Harmonic Mode Torus Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kapitsa, P.L.; Kapitsa, S.P.:Volnovoe techenie tonkikh slo-ev viazkoy zhidkosti. ZHTEF, 19(1949).Google Scholar
  2. 2.
    Shkadov, V.Ya.:Volnovie rezhimi techenia tonkogo sloya viaz-koi zhidkosti pod vozdeistviem sili tiazhesti. Izv.AN SSSR. MZHG, N 1(1967) 43–51, N 2 (1968) 20–25.Google Scholar
  3. 3.
    Shkadov, V.Ya.:Uedinennie volni v sloe viazkoi zhidkosti. Izv. AN SSSR, MZHG, N 1(1977) 63–66.Google Scholar
  4. 4.
    Demekhin, E.A.; Shkadow, V.Ya.: Nestatsionarnikh volnakh v sloe viazkoy zhidkosti. Izv. AN SSSR, MZHG, N 3 (1981) 151–153.Google Scholar
  5. 5.
    Demekhin, E.A.; Demekhin, I.A.; Shkadov, V.Ya.:Solitoni v stekaiushchikh sloyakh viazkoi zhidkosti. Izv. AN SSSR, MZHG, N 4 (1983), 9–16.Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • V. Ja. Shkadov
    • 1
  • E. A. Demekhin
    • 1
  1. 1.Department of MechanicsMathematics Moscow UniversityRussia

Personalised recommendations