New Secondary Instabilitaties for High Re-Number Flow Between Two Rotating Spheres

  • K. Bühler
  • J. Zierep
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The laminar turbulent transition in a spherical gap starts with time depending shear waves. The structure of these secondary instabilities is visualized. The dynamical behaviour is investigated by the power spectra of the local wall shear stress at the outer sphere. Depending upon the initial and boundary conditions we get different bifurcations of the laminar-turbulent transition.


Shear Wave Couette Flow Outer Sphere Shear Instability Laminar Turbulent Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Swinney, H.L.; Gollub, J.P.: Hydrodynamic Instabilities and the Transition to Turbulence. Top. in Appl. Phys. 45, Berlin 1981.Google Scholar
  2. [2]
    Barenblatt, G.I.; Ioss, G., Joseph, D.D.: Nonlinear Dynamics and Turbulence. Boston 1983.Google Scholar
  3. [3]
    Eppler, R.; Fasel, H.: Laminar-Turbulent Transition. Berlin 1980.CrossRefMATHGoogle Scholar
  4. [4]
    Fenstermacher, P.R.; Swinney, H.L.; Gollub, J.P.: Dynamical instabilities and the transition to chaotic Taylor vortex flow. J.F.M. 94, 103–128 (1979).CrossRefGoogle Scholar
  5. [5]
    Krugljak, Z.B. et al.: Laminar-Turbulent Transition in Circular Couette Flow. IUTAM Symp. Laminar-Turbulent Trans., Berlin, 378–387 (1980).Google Scholar
  6. [6]
    Belayev, Yu.N.; Yavorskaya, I.M.: Transition to Stochasticity of Viscous Flow between Rotating Spheres. Nonlin. Dyn. and Turb., ed: Barenblatt, G.I.; Ioss, G.; Joseph, D.D., Boston, 61–70 (1983).Google Scholar
  7. [7]
    Schultz-Grunow, F.: Sudden transition to turbulence. IUTAM Symp. Laminar-Turbulent Trans., Berlin, 388–395 (1980).Google Scholar
  8. [8]
    Sawatzki, O.; Zierep, J.: Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert. Acta Mech. 9, 13–35 (1970).CrossRefGoogle Scholar
  9. [9]
    Wimmer, M.: Experiments on a viscous fluid flow between concentric rotating spheres. J.F.M. 78, 317–335 (1976).CrossRefGoogle Scholar
  10. [10]
    Yavorskaya, I.M. et al.: Stability non-uniqueness and transition to turbulence in the flow between two rotating spheres. Proc. XVth Int. Congr. of Theor. and Appl. Mech., 431–443 (1980).Google Scholar
  11. [11]
    Greenspan, H.P.: The theory of rotating fluids. Cambridge, 1968.Google Scholar
  12. [12]
    Poll, D.I.A.: Three-Dimensional Boundary Layer Transition via the Mechanisms of ‘Attachment Line Contamination’ and ’Cross Flow Instability’. IUTAM Symp. Laminar-Turb. Trans., Berlin, 253–262, (1980).Google Scholar
  13. [13]
    Bühler, K.; Zierep, J.: Transition to turbulence in a spherical gap. Proc. 4th Int. Symp. on Turb. Shear Flows, 161–166 (1983).Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • K. Bühler
    • 1
  • J. Zierep
    • 1
  1. 1.Institut für Strömungslehre und StrömungsmaschinenUniversität (TH) KarlsruheWest-Germany

Personalised recommendations