Three-Dimensional Numerical Simulation of Laminar Turbulent Transition and its Control by Periodic Disturbances

  • L. Kleiser
  • E. Laurien
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The laminar-turbulent transition process in plane Poiseuille flow is simulated by numerical integration of the three-dimensional time-dependent Navier-Stokes equations using a spectral method. The classical peak-valley splitting mode of secondary instability is considered. Detailed comparison with experiments has demonstrated very satisfactory agreement up to the 1-spike stage. Visualizations of the development of three-dimensional flow structures are presented including timelines of fluid markers. It is found that the A vortex structure appearing in flow visualizations does not consist of a vortex tube as the usual interpretation of the vortex loop concept suggests. A numerical study of transition control by superposition of purely two-dimensional waves shows that efficient control is possible at an early stage of the transition process but fails once significant three-dimensional disturbances are present.


Vortex Line Vortex Tube Secondary Instability Springer Lecture Note Boundary Layer Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.A. Orszag, A.T. Patera, JFM 128 (1983) 347–385CrossRefMATHADSGoogle Scholar
  2. [2]
    Th. Herbert, AIAA paper 83–1759 (1983) and AIAA paper 84–0009 (1984)Google Scholar
  3. [3]
    Th. Herbert, Secondary instability of shear flows, in AGARD Report No. 709 (1984)Google Scholar
  4. [4]
    W.S. Saric, V.V. Kozlov, V.Ya. Levchenko, AIAA paper 84–0007 (1984)Google Scholar
  5. [5]
    M. Nishioka, M. Asai, S. Iida, Proc. IUTAM Symposium on Laminar-Turbulent Transition, Stuttgart, 1979 (Springer Verlag, 1980 ) 37–46Google Scholar
  6. [6]
    M. Nishioka, M. Asai, Proc. IUTAM Symposium on Turbulence and Chaotic Phenomena, Kyoto, 1983Google Scholar
  7. [7]
    V.V. Kozlov, M.P. Ramasanov, Fluid Dynamics 18 (1983) 30–33CrossRefADSGoogle Scholar
  8. [8]
    Th. Herbert, Fluid Dyn. Trans. 11 (1983) 77–126Google Scholar
  9. [9]
    L. Kleiser, Numerische Simulationen zum laminar-turbulenten UmschlagsprozeD der ebenen Poiseuille-Strömung. Dissertation, Karlsruhe, 1982 (Report KfK 3271, Kernforschungszentrum Karlsruhe)Google Scholar
  10. [10]
    L. Kleiser, Springer Lecture Notes in Physics 170 (1982) 280–285CrossRefADSGoogle Scholar
  11. [11]
    L. Kleiser, U. Schumann, in R.G. Voigt et al. (ed.), Spectral Methods for Partial Differential Equations, SIAM, Philadelphia 1984, 141–163Google Scholar
  12. [12]
    L. Kleiser, in H.L. Jordan. (ed.), Nonlinear Dynamics in Trans-critical Flows, Springer Lecture Notes in Engineering, to appearGoogle Scholar
  13. [13]
    A. Wray, M.Y. Hussaini, AIAA paper 80–0275 (1980)Google Scholar
  14. [14]
    F.R. Hama, Phys. Fluids 5 (1962) 644–650CrossRefMATHADSGoogle Scholar
  15. [15]
    F.X. Wortmann, Springer Lecture Notes in Physics 148 (1981) 268–279CrossRefADSGoogle Scholar
  16. [16]
    D.R. Williams, H. Fasel, F.K. Hama, to appear in JFMGoogle Scholar
  17. [17]
    R.W. Milling, Phys. Fluids 24 (1981) 979–981CrossRefADSGoogle Scholar
  18. [18]
    H.W. Liepmann, D.M. Nosenchuck, JFM 118 (1982) 201–204CrossRefADSGoogle Scholar
  19. [19]
    A.S.W. Thomas, JFM 137 (1983) 233–250CrossRefADSGoogle Scholar
  20. [20]
    E. Laurien, L. Kleiser, to appear in ZAMMGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • L. Kleiser
    • 1
  • E. Laurien
    • 1
  1. 1.Institute for Theoretical Fluid MechanicsDFVLRGöttingenGermany

Personalised recommendations