Stability of Finite-Amplitude Autooscillations in Poiseuille Flow

  • N. N. Yanenko
  • B. Yu. Scobelev
  • A. Zharilkasimov
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

The conditions of existence of analytical invariant manifolds for Navier-Stokes equations are derived. A method of constructing the invariant manifolds in specific problems is suggested. The bifurcations of subcritical autooscillating regimes in a plane Poiseuille flow are studied.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iooss, G.: Bifurcation of a periodic solution of the NavierStokes equations into an invariant torus. Arch. Rat. Mech. Anal. 58 (1975) 35–56.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Scobelev, B.Yu.: Secondary flows in a plane channel. Zhurn. Prikl. Math. Mekh. 42 (1978) 361–367.Google Scholar
  3. 3.
    Struminsky, V.V.; Scobelev, B.Yu.: Nonlinear neutral curve for Poiseuille flow. DAN SSSR, 252 (1980), 566–570Google Scholar
  4. 4.
    Scobelev, B.Yu.; Molorodov, Yu.I.: Subcritical autooscillations and nonlinear neutral curve for Poiseuille flow. Comp. Math. with Appls., 6 (1980) 123–133.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • N. N. Yanenko
    • 1
  • B. Yu. Scobelev
    • 1
  • A. Zharilkasimov
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsUSSR Academy of SciencesNovosibirskUSSR

Personalised recommendations