Some Decision Results on Nonrepetitive Words

  • Antonio Restivo
  • Sergio Salemi
Conference paper
Part of the NATO ASI Series book series (volume 12)

Abstract

The paper addresses some generalizations of the Thue Problem such as: given a word u, does there exist an infinite nonrepetitive overlap free (or square free) word having u as a prefix? A solution to this as well as to related problems is given for the case of overlap free words on a binary alphabet.

Keywords

Prefix Suffix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.J. BRANDENBURG, Uniformly growing k-th power free homomorphism, Theoretical Computer Science, 23 (1983) 69–82.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    A. CARPI, A result on weakly square free words related to a problem of Restivo, Bulletin of the EATCS, 22 (1984) 116–119.Google Scholar
  3. [3]
    A. deLuca, A. RESTIVO, S. SALEMI, On the centers of a language, Theoretical Computer Science, 24 (1983) 21–34.MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. LOTHAIRE, Combinatorics on words, Addison-Wesley (1983).Google Scholar
  5. [5]
    M. NIVAT, Sur les ensembles de mots infinis engendres par une grammaire algebrique, RAIRO J. Theoretical Informatics 12 (1980) 259–278.MathSciNetGoogle Scholar
  6. [6]
    A. RESTIVO, S. SALEMI, On weakly square free words, Bulletin of the EATCS, 21 (1983) 49–56.Google Scholar
  7. [7]
    R. SHELTON, R. SONI, Aperiodic words on three symbols, III, J. reine angew Math., 330 (1982) 44–52.MathSciNetMATHGoogle Scholar
  8. [8]
    A. THUE, Uber unendliche Zeichernreihen, Norske Vid. Selsk. Skr. I, Mat. Nat. KI. Christiana 7 (1906) 1–22.Google Scholar
  9. [9]
    A. THUE, Uber die gegenseitie Lage gleicher Teile gewisser Zeichernreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. KI. Christiana 1 (1912) 1–67.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Antonio Restivo
    • 1
  • Sergio Salemi
    • 1
  1. 1.Istituto di Matematicadell’Universitá di PalermoPalermoItaly

Personalised recommendations