The Use and Usefulness of Numeration Systems

  • Aviezri S. Fraenkel
Conference paper
Part of the NATO ASI Series book series (volume 12)


The proper choice of a counting system may solve mathematical problems or lead to improved algorithms This is illustrated by a problem in combinatorial group theory, compression of sparse binary strings, encoding of contiguous binary strings of unknown lengths, ranking of permutations and combinations, strategies of games and other examples. Two abstract counting systems are given from which the concrete ones used for the applications can be derived.


Nonnegative Integer Numeration System Fibonacci Number Single Pile Huffman Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Apostolico and A.S. Fraenkel, Robust complete universal Fibonacci representations, and transmission of unbounded strings, Technical Report, December 1983.Google Scholar
  2. 2.
    M. Berger, A. Felzenbaum and A.S. Fraenkel, An improvement to the Newman-Znám result for disjoint covering systems, Technical Report, Department of Mathematics, The Weizmann Institute of Science, September 1984.Google Scholar
  3. 3.
    F.R.K. Chung and R.L. Graham, On irregularities of distribution of real sequences, Proc. Natl. Acad. Sci. USA 78 (1981) 4001.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    S. Even, Algorithmic Combinatorics, Macmillan, New York, N.Y., 1973.MATHGoogle Scholar
  5. 5.
    S. Even and M. Rodeh, Economical encoding of commas between strings, CALM 21 (1978) 315–317.MathSciNetMATHGoogle Scholar
  6. 6.
    A.S. Fraenkel, New proof of the generalized Chinese Remainder Theorem, Proc. Amer. Math. Soc. 14 (1963) 790–791.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    A.S. Fraenkel, How to beat your Wythoff games’ opponent on three fronts, Amer. Math. Monthly 89 (1982) 353 361.MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.S. Fraenkel, Wythoff games, continued fractions, cedar trees and Fibonacci searches, Theoretical Computer Science 29 (1984) 49–73.MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.S. Fraenkel, Systems of numeration, Amer. Math. Monthly, to appear (Jan. 1985).Google Scholar
  10. 10.
    A.S. Fraenkel and T. Klein, Novel compression of sparse bit-strings — preliminary report, These Proceedings.Google Scholar
  11. 11.
    A.S. Fraenkel and M. Mor, Combinatorial compression and partitioning of large dictionaries, The Computer J. 26 (1983) 336–343.MathSciNetMATHGoogle Scholar
  12. 12.
    M. Jakobson, Huffman coding in bit-vector compression, Inform. Process. Letters 7 (1978) 304–307.CrossRefGoogle Scholar
  13. 13.
    S.M. Johnson, Generation of permutations, Math. Comp. 17 (1963) 282–285.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Second Printing, Addison-Wesley, Reading, MA, 1973.Google Scholar
  15. 15.
    D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd Edition, Addison-Wesley, Reading, MA, 1981.MATHGoogle Scholar
  16. 16.
    D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Second Printing, Addison-Wesley, Reading, MA, 1975.Google Scholar
  17. 17.
    D.E. Lehmer, The machine tools of combinatorics, in Applied Combinatorial Mathematics (E.F. Beckenbach, Ed.), Wiley, New York, NY, pp. 5–31, 1964.Google Scholar
  18. 18.
    W.C. Lynch, The t-Fibonacci numbers and polyphase sorting, The Fibonacci Quarterly 8 (1970) 6–22.MathSciNetMATHGoogle Scholar
  19. 19.
    M. Mor and A.S. Fraenkel, Cayley permutations, Discrete Mathematics 48 (1984) 101–112.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    S. Pleszcynski, On the generation of permutations, Inform. Process. Letters 3 (1975) 180–183.CrossRefGoogle Scholar
  21. 21.
    M. Rodeh, V.R. Pratt and S. Even, Linear algorithm for data compression via string matching, J. ACM 28 (1981) 16–24.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    A.J. Schwenk, Take-away games, The Fibonacci Quarterly 8 (1970) 225–234.MathSciNetGoogle Scholar
  23. 23.
    M.B. Wells, Generation of permutations by transpositions, Math. Comp. 15 (1961) 192–195.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    M.J. Whinihan, Fibonacci slim, The Fibonacci Quarterly 1No. 4 (11963) 9–12.Google Scholar
  25. 25.
    W. Wythoff, A modification of the game of Nim, Nieuw Arch. Wish. 7 (1907) 199–202.Google Scholar
  26. 26.
    A.M. Yaglom and I.M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, translated by J. McCawley, Jr., revised and edited by B. Gordon, Vol. II, Holden-Day, San Francisco, 1967.Google Scholar
  27. 27.
    E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Royale Sci. Liège 41 (1972) 179–182.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Aviezri S. Fraenkel
    • 1
    • 2
  1. 1.Queens CollegeFlushingUSA
  2. 2.Department of Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations