Resolution Modal Logics

  • Luis Fariñas-del-Cerro
Conference paper
Part of the NATO ASI Series book series (volume 13)

Abstract

In this paper we describe a general way to define a resolution method in the framework of non classical logics.

Keywords

Coherence GALLION Tempo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [AR]
    ANDERSON, R., Improved decision procedures for Lewis’s calculus S4 and von Wright’s calculus. J.S.L., Vol. 19, 3, (1953), pp. 101–214.Google Scholar
  2. [BA]
    BAYART A., On truth-tables for M, B, S4 and S5. Logique et Analyse, Sept. 1970, pp. 335–375.Google Scholar
  3. [CR]
    CARNAP, R., Modalities and quantification. J.S.L., vol. 11, 2, (1946), pp. 33–64.MATHMathSciNetGoogle Scholar
  4. [CF1]
    CAVALLI, A.R., FARINAS DEL CERRO, L., Specification and verification of networks protocols using temporal logic. Proceedings of the Sixième Colloque International sur la programmation, Springer-Verlag, LNCS no 167, (1984).Google Scholar
  5. [CF2]
    CAVALLI, A.R., FARINAS DEL CERRO, L., Adecision method for linear temporal logic. Proceedings of the Seventh International Conference on Automata Deduction, Springer-Verlag, LNCS n° 170, (1984).Google Scholar
  6. [CHL]
    CHANG, C., LEE, R., Symbolical logic and mechanical theorem proving. Academic Press, New-York, (1973).Google Scholar
  7. [CM1]
    CIALDEA, M., Une méthode de résolution pour la logique intuitionniste propositionnelle. Rapport LSI, Université Paul Sabatier, Toulouse, (1983).Google Scholar
  8. [CM2]
    CIALDEA, M., Ph.d. Thesis Université Toulouse III, in preparation.Google Scholar
  9. [CL]
    COMBES, P., LEFORT, V., Gentiane: un outil de preuve de cohérence de formules en logique temporelle. Note technique, CNET IPAA ILLC.Google Scholar
  10. [FC1]
    FARINAS DEL CERRO, L., Déduction automatique et logique modale. Thèse d’Etat, Université de Paris V II, 1981.Google Scholar
  11. [FC2]
    FARINAS DEL CERRO, L., Prolegomena for programming in modal logic. 6th European Meeting on Cybernetics and Systems Research, Vienne, Avril 1982, North-Holland, (1982).Google Scholar
  12. [FC3]
    FARINAS DEL CERRO, L., Logique modale et processus communicants. Colloque AFCET “Les mathématiques de l’Informatique”, Paris, (1982).Google Scholar
  13. [FC4]
    FARINAS DEL CERRO, L., A simple deduction method for modal logic. Information Processing Letters, Vol. 14, n°2, (1982).Google Scholar
  14. [FC5]
    FARINAS DEL CERRO, L., A deduction method for modal logic. Europeaan IA Conference, 11–14 July 1982, Orsay.Google Scholar
  15. [FC6]
    FARINAS DEL CERRO, L., Les modalités de la correction totale. RAIRO Informatique Théorique, Vol. 16, n°4, (1982), pp. 349–363.MATHGoogle Scholar
  16. [FC7]
    FARINAS DEL CERRO, L., Temporal reasoning and termination of programs. Proceedings IJCAI 1983.Google Scholar
  17. [FC8]
    FARINAS DEL CERRO, L., Un principe de résolution en logique modale. RAIRO Informatique Théorique, Vol. 18, n° 2, (1984).Google Scholar
  18. [FL]
    FARINAS DEL CERRO, L., LAUTH, E., Raisonnement temporel: une méthode de déduction. Rapport LSI, Université Paul Sabatier, Toulouse, Novembre 1982.Google Scholar
  19. [FS]
    FARINAS DEL CERRO, L., SOULHI, S., Mutual belief logic for processing definite reference. Proceedings of International Workshop on Natural Language Understanding and Logic Programming, Rennes, 18–20 Septembre 1984, North-Holland.Google Scholar
  20. [GO]
    GALLION, O., Implémentation d’un démonstrateur de théorèmes. Rapport LSI, Université Paul Sabatier, Toulouse, Novembre 1981.Google Scholar
  21. [HJ]
    HENRY, J., Implémentation d’un démonstrateur pour des clauses d’Horn en logique modale. Rapport LSI, Université Paul Sabatier, en préparation.Google Scholar
  22. [KR]
    KOCHUT, E., RYCHLINK, P., Applications of modal logic in information systems, in Bolc, L., (ed.), Translating natural language into logical form, Springer, Symbolic Computation serie, to appear.Google Scholar
  23. [LE]
    LAUTH, E., Une méthode de résolution linéaire ordonnées pour la logique temporelle linéaire. Rapport LSI-ENSEEITH, Université Paul Sabatier, Toulouse, (1983).Google Scholar
  24. [LE]
    LEMMON, E., An introduction to modal logic. Amer. Philo. Generaly Monograph, (1977).MATHGoogle Scholar
  25. [SM]
    SHIMURA, M., Resolution in a new modal logic. Proceedings IJCAI 79, pp. 809–814.Google Scholar
  26. [OE]
    ORLOWSKA, E., Resolution systems and their applications I & II. Fundamenta Informaticae, Vol. III, n°2, (1980), pp. 235–267 & 333–362.Google Scholar
  27. [RJ]
    ROBINSON, J., A machine oriented logic based on the resolution principle. J. ACM, 12, (1965), pp. 23–41.CrossRefMATHGoogle Scholar
  28. [RP]
    RYCHLINK, P., The use of modal default reasoning in information system. To appears in The Int. Journal of Man-Machine Studies.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Luis Fariñas-del-Cerro
    • 1
  1. 1.Langages et Systèmes InformatiquesUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations