LP-Based Combinatorial Problem Solving

  • Karla Hoffman
  • Manfred Padberg
Conference paper
Part of the NATO ASI Series book series (volume 15)


A tutorial outline of the polyhedral theory that underlies linear-programming (LP)-based combinatorial problem solving is given Design aspects of a combinatorial problem solver are discussed in general terms. Three computational studies in combinatorial problem solving using the polyhedral theory developed in the past fifteen years are surveyed: one addresses the symmetric traveling salesman problem, another the optimal triangulation of input/output matrices and the third the optimization of large-scale zero-one linear programming problems.


Europe Explosive Drilling Assure Hull 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balas, E. & R. Martin [1980]: “Pivot and Complement-A Heuristic for 0-1 Programming” Management Science 26 (1980) 86–96.CrossRefMATHMathSciNetGoogle Scholar
  2. Baranyi, I., T. Van Roy, & L. Wolsey, [1983a]: “Strong Formulations for Multi-Item Capacitated Lot Sizing,” CORE Report No. 8313, Universite Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  3. Baranyi, I., T. Van Roy, & L. Wolsey, [1983b]: “Uncapacitated, Lot-Sizing: The Convex Hull of Solutions,” CORE Report No. 8314, Universite Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  4. Burkard, R. & U. Derigs, [1980]: Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, No. 184, Berlin.Google Scholar
  5. Cho, Y. D. Chinhyung, E.L. Johnson, M. Padberg M.R. Rao [1982]: “On the Uncapacitated Plant Location Problem I: Valid Inequalities and Facets,” Mathematics of Operations Research 8 (1983) 579–589.CrossRefMATHMathSciNetGoogle Scholar
  6. Cho, Y. D. Chinhyung, M. Padberg & M.R. Rao, [1983]: “On the Uncapacitated Plant Location Problem II: Facets and Lifing Theorems,” Mathematics of Operations Research 8 (1983) 590–612.CrossRefMATHMathSciNetGoogle Scholar
  7. Chvatal, V. [1973]: “Edmonds Polytopes and Weakly Hamiltonian Graphs,” Mathematical Programming, 5(1973) 29–40.CrossRefMATHMathSciNetGoogle Scholar
  8. Crowder, H. & M. Padberg [1980]: “Solving Large-Scale Symmetric Traveling Salesman Problems to Optimality,” Management Science, 26 (1980) 495–509.CrossRefMATHMathSciNetGoogle Scholar
  9. Crowder, H., E. Johnson, & M. Padberg [1983]: “Solving Large-Scale Linear Zero-One Programming Problems,” Operations Research, 31 (1983) 803–834.CrossRefMATHGoogle Scholar
  10. Dantzig, G., D.R. Fulkerson & S. Johnson [1954]: “Solution of a Large-Scale Traveling Salesman Problem” Operations Research 2(1954) 293-410.Google Scholar
  11. Edmonds, J. [1965]: “Maximum Matching and a Polyhedron with 0,1 Vertices,” Journal of Research, National Bureau of Standards, 69B (1965) 125-130.Google Scholar
  12. Fleischmann, B. [1981]: “The Traveling Salesman Problem on a Road Network,” Working paper, Fachbereich Wirtschaftswissenschaften, Universitat Hamburg, revised July 1982.Google Scholar
  13. Fleischmann, B., [1982]: “Linear-Programming Approaches to Traveling Salesman and Vehicle Scheduling Problems,” paper presented at the XI. International Symposium on Mathematical Programming, Bonn, FRG.Google Scholar
  14. Gomory, R. & T.C. Hu [1961]: “Multi-terminal Network Flows,” J. SIAM 9 (1961) 551–570.MATHMathSciNetGoogle Scholar
  15. Grotschel, M. & O. Holland, 1984]: “Solving Matching Problems with Linear Programming,” Preprint No. 37, Mathematisches Institut, Universitat Augsburg, FRG.Google Scholar
  16. Grotschel, M. & M. Padberg [1983]: “Polyhedral Aspects of the Traveling Salesman Problem I: Theory,” to appear in Lawler, E. et al. (eds.): The Traveling Salesman Problem, North-Holland, 1985.Google Scholar
  17. Grötschel, M., M. Junger & G. Reinelt (1982a]: “On the Acyclic Subgraph Polytope,” WP 82215-OR, Institut fur Operations Research, Universitat Bonn. (1982).Google Scholar
  18. Grötschel, M., M. Jünger & G. Reinelt [1982b]: “Facets of the Linear Ordering Polytope”. WP 82217-OR, Institut fur Operations Research, Universitat Bonn (1982).Google Scholar
  19. Grotschel, M., M. Jünger, & G. Reinelt [1983]: “Optimal Triangulation of Large Real World Input-Output Matrices,” Preprint No. 9, Mathematisches Institut, Universitat Augsburg (1983).Google Scholar
  20. Held & Karp [1970]: “The Traveling Salesman & Minimum Spanning Trees,” Part 1 Operations Research 18 (1970) 1138–1162, Part II, Mathematical Programming 1 (1971)CrossRefMATHMathSciNetGoogle Scholar
  21. Hong, S., [1972]: “A Linear Programming Approach for the Traveling Salesman Problem,” Ph.D. Thesis, Johns Hopkins University, Baltimore.Google Scholar
  22. Hammer, P.L., M. Padberg & U.N. Peled [1975]: “Constraint Pairing in Integer Programming INFOR-Canadian Journal of Operations Research”, 13 (1975) 68–81.MATHMathSciNetGoogle Scholar
  23. Johnson, E., & M. Padberg [1981]: “A Note on the Knapsack Problem with Special Ordered Sets” Operations Research Letters, 1 (1981) 38–43.CrossRefMathSciNetGoogle Scholar
  24. Johnson, E. & M. Padberg [1982]: “Degree-Two Inequalities, Clique Facets and Biperfect Graphs,” Annals of Discrete Mathematics, 16 (1982) 169–187.MATHMathSciNetGoogle Scholar
  25. Knuth, D. [1976]: “The Traveling Salesman Problem,” illustrative example in H. Sullivan: Frontiers of Science, from Microcosm to Macrocosm. The New York Times, February 24 (1976) 18.Google Scholar
  26. Krolak, P., Felts, W. & G. Marble, [1971]: “A Man-Machine Approach Toward Solving the Traveling Salesman Problem,” CACM 14 327-334.Google Scholar
  27. Land, A., [1979]: “The Solution of 100-City Symmetric Traveling Salesman Problems,” Research Report, London School of Economics, London.Google Scholar
  28. Leontief, W. [1936]: “Quantitative Input and Output Relations in the Economic System of the United States,” Review of Economic Systems 18 105-126.Google Scholar
  29. Leontief, W., [1951]: The Structure of the American Economy 1919-1939 Oxford University Press, New York.Google Scholar
  30. Leontief, W. [1963]: “The Structure of Development” Scientific American, 1963. Leontief, W., [1966]: Input-Output Economics, New York, Oxford University Press.Google Scholar
  31. Lin, S. & B. Kerningham, [1973]: “An Effective Heuristic Algorithm for the Traveling Salesman,” Operations Research, 21 498-516.Google Scholar
  32. Marsten, R.E. [1981]: “XMP: A Structured Library of Subroutines for Experimental Mathematical Programming,” ACM Transactions on Mathematical Software 7 (1981) 481–497.CrossRefGoogle Scholar
  33. Marsten, R. E. [1983]: “User’s Guide to IP83,” Technical Report, Dept. of Management Information Systems, University of Arizona.Google Scholar
  34. Marsten, R.E. & T.L. Morin, [1978]: “A Hybrid Approach to Discrete Mathematical Programming,” Mathematical Programming 14 (1978) 21–40.CrossRefMATHMathSciNetGoogle Scholar
  35. Martin, R.K. & L. Schräge [1983]: “Subset Coefficient Reduction Cuts for 0/1 Mixed Integer Programming,” Technical Report. Graduate School of Business, University of Chicago, Chicago, Illinois.Google Scholar
  36. Milioti8, T., [1976]: “Integer Programming Approaches to the Traveling Salesman Problem,” Mathematical Programming, 10 367-368.Google Scholar
  37. Miliotis, T., [1979]: “Using Cutting Planes to Solve the Symmetric Traveling Salesman Problem,” Mathematical Programming, 15 177-188.Google Scholar
  38. Padberg, M. [1973]: “On the Facial Structure of Set Packing Polyhedra,” Mathematical Programming, 5 (1973) 199–215.CrossRefMATHMathSciNetGoogle Scholar
  39. Padberg, M. [1974]: “Characterizations of Totally Unimodular, Balanced and Perfect Matrices,” in B. Roy (ed.): Combinatorial Programming: Methods and Applications, D. Reidel Publishing Co., Dordrecht-Holland, 1975 275-284.Google Scholar
  40. Padberg, M. [1975]: “A Note on Zero-One Programming,” Operations Research 23(1975) 833-837.Google Scholar
  41. Padberg, M. [1977]: “On the Complexity of Set Packing Polyhedra,” Annals of Discrete Mathematics, 1 (1977) 421–434.CrossRefMathSciNetGoogle Scholar
  42. Padberg, M. [1979]: “Covering, Packing and Knapsack Problems,” Annals of Discrete Mathematics, 4 (1979) 265–281.CrossRefMATHMathSciNetGoogle Scholar
  43. Padberg, M. & S. Hong, [1980]: “On the Symmetric Traveling Salesman Problem: A Computational Study,” Mathematical Programming Studies, 12( 1980) 78-107.Google Scholar
  44. Padberg, M. [1980]: “(l,k)-Configurations and Facets for Packing Problems,” Mathematical Programming 18 (1980) 94–99.CrossRefMATHMathSciNetGoogle Scholar
  45. Padberg, M. & M.R. Rao [1982]: “Odd Minimum Cut-Sets and b-Matchings”, Mathematics of Operations Research, 7 (1982) 67–80.CrossRefMATHMathSciNetGoogle Scholar
  46. Padberg, M. & T. Van Roy, & L. Wolsey, [1982]: “Valid Linear Inequalities for Fixed Charge Problems,” CORE Report No. 8232, Université Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  47. Padberg, M. & M. Grötschel [1983]: “Polyhedral Aspects of the Traveling Salesman Problem II: Computation,” to appear in Lawler, E. et al. (eds.): The Traveling Salesman Problem, North-Holland, 1985.Google Scholar
  48. Singhai, J. [1982]: “Fixed Order Branch and Bound Methods for Mixed Integer Programming,” Dissertation, Dept. of Management Information Systems, University of Arizona, January, 1982.Google Scholar
  49. Thompson, G.L. & R.L. Karp [1964]: “A Heuristic Approach to Solving Traveling Salesman Problems,” Management Science 10 (1964) 225–247.CrossRefGoogle Scholar
  50. Trotter, L. [1976]: “A Class of Facets for Vertex-Packing Polyhedra,” Discrete Mathematics 12 (1975) 373–388.CrossRefMATHMathSciNetGoogle Scholar
  51. Van Roy, T. & L. Wolsey, [1983]: “Valid Inequalities for Mixed 0-1 Programs,” CORE Report No. 8316, Université Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  52. Van Roy, T. & L. Wolsey, [1984a]: “Valid Inequalities and Separation for Uncapacitated Fixed Charge Networks,” CORE Report No* 8410,. Université Catholique Louvain-la-Neuve, Belgium.Google Scholar
  53. Van Roy, T. & L. Wolsey, [1984b]: “Solving Mixed Integer Programs by Automatic Reformulation,” CORE Research No. 8432, Université Catholique, Louvain-la-Neuve, Belgium.Google Scholar
  54. Weyl, H. [1935]: “Elementare Theorie der konvexen Polyheder,” Comm. Math. Helv., 7 (1935), 290–306 translated in Contributions to the Theory of Games, Vol. I, 3-18, Annals of Mathematics Studies, No. 24, Princeton, 1950.CrossRefMATHMathSciNetGoogle Scholar
  55. Wolsey, L. [1975]: “Faces for a Linear Inequality in 0-1 Variables,” Mathematical Programming 8(1975) 165-178.Google Scholar
  56. Young, H.P. [1978]: “On Permutations and Permutation Polytopes,” Mathematical Programming Studies 8 (1978) 128–140.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Karla Hoffman
    • 1
    • 2
  • Manfred Padberg
    • 3
  1. 1.Center for Applied MathematicsNational Bureau of StandardsGaithersburgUSA
  2. 2.Operations Research DivisionNational Bureau of StandardsGaithersburgUSA
  3. 3.Graduate School of Business AdministrationNew York UniversityNew YorkUSA

Personalised recommendations