Advertisement

Software for Mathematical Programming

  • K. Schittkowski
Part of the NATO ASI Series book series (volume 15)

Abstract

The NATO Advanced Study Institute on Computational Mathematical Programming was accomplished by several activities of a Software Fair. The most important one was the display of information material on existing optimization software. More than 50 code descriptions were submitted by the authors to describe characteristic features of their programs. In all cases, the codes are well tested and documented, are currently used for solving practical optimization optimization problems, and are available on request either in form of a listing or on a magnetic tape. In most cases, the programming language is FORTRAN.

Keywords

Programming Language Mathematical Problem Nonlinear Programming Problem Stochastic Linear Program AVAI LABI LITY 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ibaraki, T.-K. Liu, C.R. Baugh, and S. Muroga, “An implicit enumeration program for zero-one programming,” International Journal of Computer and Information Sciences, Vol. 1, No. 1, March 1972, pp. 75–92.CrossRefMATHGoogle Scholar
  2. M.-H. Young, T.-K. Liu, C.R. Baugh, and S. Muroga, “A code for zero-one integer programming ILLIP-2 (a programming manual for ILLIP-2),” Dept. of Computer Science, Univ. of I11. at Urbana-Champaign, UIUCDCS-R-77-858, April 1977, 175 pp. (Available from NTIS, U.S. Department of Commerce.)Google Scholar
  3. MAGIC User’s Manual from above addressGoogle Scholar
  4. R. Van Slyke & R. Wets, “L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC LINEAR PROGRAMS,” SIAM JOURNAL ON APPLIED MATHEMATICS, v. 17 pp, 638–663, 1969CrossRefMATHMathSciNetGoogle Scholar
  5. J. Birge, “DECOMPOSITION AND PARTITIONING METHODS FOR MULTI-STAGE STOCHASTIC LINEAR PROGRAMS,” TECHNICAL REPORT 82-6, DEPT. OF INDUSTRIAL AND OPERATIONS ENGINEERING, UNIVERSITY OF MICHIGAN, 1982 J. Birge, “ANL-SHAPED METHOD COMPUTER CODE FOR MULTI-STAGE STOCHASTIC LINEAR PROGRAMS”, IN NUMERICAL METHODS FOR STOCHASTIC OPTIMIZATION, Yu.Ermol’ev & R. Wets (Eds), To appear.Google Scholar
  6. Yu. Ermol’ev and A. Gaivoronski, “Stochastic quasigradient methods and their implementations”, IIASA Working Paper WP-84-55, IIASA, Laxenburg, 1984Google Scholar
  7. R.T. Rockafellar & R. Wets, “A Lagrangian finite generation technique for solving linear-quadratic problems in stochastic programming,” IIASA Working-Paper WP-84-25, IIASA, Laxenburg, 1984Google Scholar
  8. A. King, “An implementation of the LFGM,” in Numerical Methods for Stochastic Optimization, Yu. Ermol’ev & R. Wets (Eds.), to appearGoogle Scholar
  9. K. Marti, “Descent stochastic quasigradient methods,” HSBw München, 1984Google Scholar
  10. J.L. Nazareth & R. Wets, “Stochastic programs with recourse: Algorithms and Implementations,” IIASA Working Paper, Forthcoming. J.L. Nazareth, “Algorithms based upon generalized linear programming for stochastic programs with recourse,” IIASA Working Paper WP-84-81, IIASA, Laxenburg, 1984Google Scholar
  11. J.L. Nazareth & R. Wets, “Algorithms for stochastic programs: The case of nonstochastic tenders,” IIASA Working Paper WP-83-5, IIASA, Laxenburg 1983Google Scholar
  12. L. Qi, “Forest iteration method for stochastic transportation problems,” to appear in Math. Prog. StudyGoogle Scholar
  13. A. Ruszcyzynski & W. Syski, “A method of aggregate stochastic subgradients with on-line stepsize rues for convex stochastic programming problems,” Report R.I. 21/83, Instytut Automatyki, Politechnika Warszawska, 1983 (to appear in Math. Prog. Study) A. Ruszczynski, “STOSUB: A package for solving stochastic programming problems — user’s manual,” Manuscript from the Institut für Operations Research der Universität Zürich, October 1984Google Scholar
  14. A.F. Veinott, “Supporting Hyperplane Method,” Operations Research, v. 15 pp. 147–152, 1967CrossRefMATHMathSciNetGoogle Scholar
  15. R. van Slyke & R. Wets, “L-shaped linear programs with applications to optimal control and stochastic linear programs/” SIAM Journal on Applied Mathematics, v. 17 pp. 638–663, 1969CrossRefMATHMathSciNetGoogle Scholar
  16. S.W. Wallace, “On network structured stochastic optimization problems,” Report No. 842555-8, Chr. Michelsen Institute, 1984Google Scholar
  17. J. Birge & R. Wets, “Designing Approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse,” IIASA Working Paper WP-83-111, IIASA, Laxenburg, 1983Google Scholar
  18. Lawler, E.L.: Combinatorial Optimization. Networks and Matroids. Holt, Rinehart. and Winston, New York 1976.Google Scholar
  19. Neumann, K.: Graphen und Netzwerke. Report WIOR-202. Institut für Wirtschaftstheroie und Operations Research der Universität Karlsruhe, 1983.Google Scholar
  20. Rubach, T.: Algorithmen für Graphen und Netzwerke: Beschreibungen — Programme — Dokumentation. Report WIOR-195. Institut für Wirtschaftstheorie und Operations Research der Universität Karlsruhe, 1983.Google Scholar
  21. Neumann, K.: Netzplantechnik, Report WIOR-209, Institut für Wirtschaftstheorie und Operations Research der Universität Karlsruhe, 1983Google Scholar
  22. Delivorias, P., Rubach, T.: Algorithmen zur Netzplantechnik: Beschreibungen — Programme, Dokumentation. Report WIOR-212, Institut für Wirtschaftstheorie und Operations Research der Universität Karlsruhe, 1984Google Scholar
  23. R.S. Derabo, “A Primal Truncated Newton Method for Large-Scale Linearly-Contrained Optimization”, SOM Working Paper 72, Yale University (1983)Google Scholar
  24. R.S. Dembo, “NLPNET — A Nonlinear Network Optimizer — Users Guide”, SOM Working Paper 70 (1983)Google Scholar
  25. A. Griewank and Ph.L. Toint, “Numerical experiments with partially separable optimization problems”, to appear in “Numerical Analysis, Dundee 1983”, ed. D. Griffiths, Springer Verlag.Google Scholar
  26. B.A. Murtagh and M.A. Saunders (1983). “MINOS 5.0 User’s Guide,” Report SOL 83-20, Department of Operations Research, Stanford University, California.Google Scholar
  27. Wang, S.H. and Ragsdell, K.M., “0PT2 Users Manual”, DOL, University of Arizona, 1983Google Scholar
  28. A. Dourado, Production d’ethanol dans une cascade de fermenteurs; contribution à l’étude de la modelisation, de l’identification et de l’optimisation.Google Scholar
  29. Thèse de Docteur-Ingénieur, Décembre 1983, LAAS du CWRS, 7 Avenue du Colonel Roche, f3/400 Toulouse, France.Google Scholar
  30. NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems, Report, Institut für Informatik, Universität Stuttgart, 1984 (submitted for publication)Google Scholar
  31. User’s guide for the nonlinear programming code NLPQL, Report, Institut für Informatik, Universität Stuttgart, 1984. On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function, Math. Operationsforschung u. Statistik, Ser, Optimization, Vol. 14 (1983), 197–216Google Scholar
  32. NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems, Report, Institut für Informatik, Universität Stuttgart, 1984 (submitted for publication) NLPSYS: A data base system to support interactively model building and numerical solution of nonlinear programming problems, Report, Mathematisches Institut, Universität Bayreuth, 1985.Google Scholar
  33. 1.
    M.C. Biggs, 1972, Constrained Minimization using Recursive Equality Quadratic Programming, in: Numerical Methods for Nonlinear Optimization, F.A. Lootsma (ed), Academic Press, London.Google Scholar
  34. 2.
    G. van der Hoek, 1980, Reduction Methods, in Nonlinear Programming, MC Tract 126, Mathematical Centre, (CWI), Amsterdam.Google Scholar
  35. 3.
    R.Th. Wijmenga and G. van der Hoek, 1982, User Manual to Subroutine Package WIEM for Constrained Nonlinear Programming, Report 8230/I, Econometric Institute, Erasmus University Rotterdam.Google Scholar
  36. 1.
    A.S. Louter and G. van der Hoek, 1984, TWOFAS: A 2-Phase Code for Constrained Nonlinear Programming, Econometric Institute, Erasmus University Rotterdam.Google Scholar
  37. 2.
    S.M. Robinson, 1972, A Quadratically Convergent Algorithm for General Nonlinear Programming Problems, Math. Progr., 3 145–156.MATHGoogle Scholar
  38. 3.
    G. van der Hoek, 1980, Reduction Methods in Nonlinear Programming, MC Tract 126, Mathematical Centre (CWI), Amsterdam.Google Scholar
  39. 4.
    G. van der Hoek, 1982, Asymptotic Properties of Reduction Methods Applying Linearly Constrained Reduced Problems, Math. Progr. 16, 162–189.MATHGoogle Scholar
  40. Gill, Murray, Saunders and Wrigth (1983). “User’s Guide for SOL/NPSOL; A Fortran Package for Nonlinear Programming,” Report SOL 83-12, Department of Operations Research, Stanford University, CaliforniaGoogle Scholar
  41. Technical Report 139, The Numerical Optimisation Centre, The Hatfield Polytechnic, Hatfield, Hertfordshire, England.Google Scholar
  42. 1.
    Belsare, S.V. and Arora, J.S., “An Algorithm for Engineering Design Optimization,” Int. J. for Num. Methods in Engrg., Vol. 19, 1983, pp. 841–858.CrossRefMATHGoogle Scholar
  43. 2.
    Belegundu, A.D. and Arora, J.S., “A Recursive Quadratic Programming Method for Structural Optimization with Active Set Strategy,” Int. J. for Num. Meth. in Engrg., July 1984Google Scholar
  44. Gabriele, G.A. and Ragsdell, K.M., “Opt Users Manual,” Purdue University, 1976Google Scholar
  45. Root, R.R. and Ragsdell, K.M., “BIAS Users Manual” Purdue University, 1977Google Scholar
  46. Wang, S.H. and Ragsdell, K.M., “TRUOPT Users Manual”, DOL, University of Arizona, 1983Google Scholar
  47. Gabriele, Ragsdell, “OPTLIB Users Manual,” Purdue University, 1977Google Scholar
  48. An Ellipsoid Algorithm for Nonlinear Programming, J.G. Ecker and M. Kupferschmid, Mathematical Programming 27, pages 83–106, 1983Google Scholar
  49. 1).
    A. Žilinskas. Axiomatic approach to statistical models and their use in multimodal optimization theory.— Mathematical Programming, 1982, v. 22, No. 1, p. 102–116.Google Scholar
  50. 2).
    A. Žilinskas. Results of application of multimodal optimization algorithms based on statistical models.— In: COMPSTAT 82, Wien: Physica Verlag, 1982, p. 457–462.Google Scholar
  51. Lindström, P. Algorithms for nonlinear least squares — particularly problems with constraints. (Dissertation) Report UMINF-106.83 (1983).Google Scholar
  52. Lindström, P. Preliminary versions of two user guides. One (ENLSIP), for constrained — one (ELSUNC) for unconstrained nonlinear least squares problems.Google Scholar
  53. H.G. Bock (1980): Numerical treatment of inverse problems in chemical reaction systems, Springer Series Chemical Physics 18, 102–125CrossRefGoogle Scholar
  54. J. Schiöder, H.G. Bock (1983): Identification of rate constants in bistable chemical reactions, Progress in Scientific Computing 2, Birkhäuser, Boston, 27–47.Google Scholar
  55. 1.
    K.W. Heiner, M. Kupferschmidt and J.G. Ecker, Maximizing Restitution for Erroneous Medical Payments when Auditing Samples from More than One Provider, INTERFACES 13 (1983), 12–17Google Scholar
  56. 2.
    I. Mifflin and R. Mifflin, A Basic Program for Solving Univariate Constrained Minimization Problems, Dept. of Pure and Applied Mathematics, WSU, Pullman, 1983.Google Scholar
  57. 3.
    R. Mifflin, Stationarity and Superlinear Convergence of an Algorithm for Univariate Locally Lipschitz Constrained Minimization, Mathematical Programming 28 (1984), 50–71.MATHMathSciNetGoogle Scholar
  58. 4.
    R. Mifflin, Better than Linear Convergence and Safeguarding in Nonsmooth Minimization, in P. Thoft-Christensen, ed., System Modelling and Optimization, Springer-Verlag, Berlin, 1984.Google Scholar
  59. 5. R. Mifflin, A Computational Algorithm for univariate Minimization and a Nested Application, forthcoming.Google Scholar
  60. Lemarechal, Strodiot, Bihain in: Nonlinear Programming 4, eds. Mangasarian, Meyer, Robinson Academic Press, 1981.Google Scholar
  61. “A modular system of algorithms for unconstrained minimization”, by Schnabel, Koontz and Weiss, Technical Report CU-CS-240-82, Department of Computer Science, University of Colorado, BoulderGoogle Scholar
  62. 1.
    D.P. Bertsekas, Projected Newton methods for optimization problems with simple constraints, SIAM J. Cont. Opt. 20, pp. 221–246, 1982MATHMathSciNetGoogle Scholar
  63. 2.
    J.F. Bonnans, A variant of a projected variable metric method for bound constrained optimisation problems. INRIA Report n°242, 1983Google Scholar
  64. 3.
    P. Wolfe, Convergence conditions for ascent methods, SIAM Review 11, pp. 226–235, 1969.MATHMathSciNetGoogle Scholar
  65. Gill, Murray, Saunders and Wright (1983), “User’s Guide for SOL/QPSOL: A Fortran Package for Quadratic Programming,” Report SOL 83-7, Department of Operations Research, Stanford University, CaliforniaGoogle Scholar
  66. D. Goldfarb and A. Idnani (1983) Math.Prog., Vol. 27, pp. 1–33.CrossRefMATHMathSciNetGoogle Scholar
  67. M.J.D. Powell (1983a) Report DAMTP 1983/NA 17.Google Scholar
  68. M.J.D. Powell (1983b) Report DAMTP 1983/NA 19.Google Scholar
  69. (1).
    Documentation of the FORTRAN-Subroutines for quadratic programming CONQUA and start. (Report 8231/I Econometric Institute EUR)Google Scholar
  70. J. Hald and K. Madsen: “Combined LP and Quasi-Newton methods for nonlinear ℓ1 Optimization”. Submitted to SIAM J. Num. Anal. 1983.Google Scholar
  71. J. Hald: “A2-stage algorithm for nonlinear ℓ1 Optimization”. Report NI-81-03, Institute for Numerical Analysis, Technical University, DK-28OO Lyngby, DenmarkGoogle Scholar
  72. J. Hald and K. Madsen: “Combined LP and Quasi-Newton methods for minimax Optimization”. Math.Prog. 20 (1981), pp. 49–62.CrossRefMATHMathSciNetGoogle Scholar
  73. J. Hald: “MMLA1Q, a FORTRAN subroutine for linearly constrained minimax Optimization”. Report NI-81-01, Institute for Numerical Analysis, Technical University, DK-28OO Lyngby, DenmarkGoogle Scholar
  74. Fortran-Programme zu numerischen Lösung optimaler Steuerungsprobleme, DFVLR-Mitt. 80–03, 1980.Google Scholar
  75. H.G. Bock (1980): Numerical treatment of inverse problems in chemical reaction systems, Modelling of chemical reactions (eds. Ebert, Deuflhard, Jäger), Springer, Berlin, 102–125Google Scholar
  76. H.G. Bock (1983): Recent advances in parameter identification techniques for o.d.e., Numerical treatment of inverse problems (eds. Deuflhard, Hairer) Birkhäuser, Boston, 95–121.Google Scholar
  77. H.G. Bock, K.J. Plitt (1983): A multiple shooting algorithm for direct solution of constrained optimal control problems, Proc. 9th IFAC World Congress Automatic Control, Pergamon Press.Google Scholar
  78. H.G. Bock (1978), Numerical solution of nonlinear multipoint boundary value problems with applications to optimal control, ZAMM 58.Google Scholar
  79. H.G. Bock (1981): Numerical treatment of state-constrained and Chebyshev control problemds (in German), Carl-Cranz-Gesellschaft, Heidelberg.Google Scholar
  80. H.G. Bock, P. Krämer-Eis (1981): An efficient algorithm for approximate computation of feedback control laws in nonlinear processes. ZAMM 61.Google Scholar
  81. H.G. Bock, P. Krämer-Eis (1983): A multiple shooting algorithm for numerical computation of open and closed loop controls in nonlinear systems, Proc. 9th IFAC World Congress Automatic Control, Pergamon Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Schittkowski
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgart 1Germany F.R.

Personalised recommendations