Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 16))

Abstract

We describe the implementation of a programmable general-purpose acoustical front-end for speech recognition; its design keeps into account, as an example, the algorithm of centisecond cepstrum extraction for an acoustical signal sampled at a maximum rate of 12.8 kHz.

It consists of three boards, a master board controlled by a general purpose microprocessor, a slave board containing two digital signal processors working in parallel and an input/output analog board.

The overall system is connected to a general-purpose minicomputer, which constitutes the system host. The implementation details and its rationale (mainly reprogrammability and performance) are outlined. In cases of more demanding applications, the system could also be hardware reconfigured with cascade or parallel sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schafer R.W. and Markel J.D. (editors) Speech Analysis IEEE Press 1978

    Google Scholar 

  2. Rabiner L. and Schafer R. Digital Process of Speech Signals Prentice Hall 1979

    Google Scholar 

  3. Rabiner L. and Levinson S.E. Isolated and Connected Word Recognition. Theory and Selected Applications IEEE Trans, on Communication, vol. COM-29, N.5, May 1981, pp.621–659

    Article  Google Scholar 

  4. Foil J.T. and Johnson D.H. Text Independent Speaker Recognition IEEE Communication Magazine, Dec. 1983, pp.22–25

    Google Scholar 

  5. Flanagan J.L., Schroeder M.R., Atal B.S., Crochiere R.E., Jayant N.S. and Tribolet J.M. Speech Coding IEEE trans, on Communications, Vol. COM-27, n.4, April 1979, pp.710–737

    Article  Google Scholar 

  6. Bisiani R. Computer Systems for High Performance Speech Recognition This issue of NATO Advanced Studies on New Systems and Architectures for Automatic Speeech Recognition and Synthesis, Bonas, July 1984

    Google Scholar 

  7. Oppenheim A.V. Speech Spectrograms Using the Fast Fourier Transform IEEE Spectrum, August 1970, pp.57–62

    Google Scholar 

  8. Makhoul J. Linear Prediction: a Tutorial Review IEEE Proceedings, vol 63, n.4, April 1975, pp.561–580

    Article  Google Scholar 

  9. Childers D.G. Skinner D.P. and Kemerait R.C. The Cepstrum: a Guide to Processing IEEE proceedings, vol. 65, n.10, October 1977, pp.1428–1443

    Google Scholar 

  10. Burky D. Digital Signal Processing Chips Move off the Designer’s Wish List and Enter into Everyday Use Electronic Design, May 17,1984, pp.100–122

    Google Scholar 

  11. Crochiere R.E. and Flanagan J.L. Current Perspectives in Digital Speech ICC 82- Philadelphia -June 1982

    Google Scholar 

  12. Davis S.B. and Mermelstein P. Comparison of Parametric Representations of Monosyllabic Word Recognition in Continuously Spoken Sentences IEEE trans. ASSP-28 (1980) pp.357–366

    Google Scholar 

  13. Caudel E.R., Hester R.K. and Khen-Sang Tan A Chip Set for Audio Frequency Digital Signal Processing ICASSP-82 (Paris), pp.1065–1068

    Google Scholar 

  14. Daly D.F. and Bergeron L.E. A Programmable Voice Digitizer Using the T.I. TMS320 Microcomputer ICASSP-83 (Boston) 11.2 (pp. 475–478)

    Google Scholar 

  15. Mehrgardt S. Signal Processing with a Fast Microcomputer System Signal Processing II: Theories and Applications- pp.351–354 EURASIP-1983

    Google Scholar 

  16. Bryden B. and Hassanein H. Implementation of a Full Duplex 2.4 kbps LPC Vocoder on a Single TMS320 Microprocessor Chip ICASSP-84 (San Diego) 44.12

    Google Scholar 

  17. Sweitzer S. A Low Cost FFT Chip Set ICASSP-84 (San Diego) 44.3

    Google Scholar 

  18. Brigham E.O. The Fast Fourier Transform Prentice Hall 1974

    Google Scholar 

  19. Morris L.R. Digital Signal Processing Software 1983 DSPS

    Google Scholar 

  20. Weste N., Burr D.J. and Ackland B.D. Dynamic Time Warp Pattern Matching Using an Integrated Multiprocessor Array IEEE trans, on Computers, vol. C-32, n.8, August 1983, pp.731–744

    Article  Google Scholar 

  21. Morris L.R. Automatic Generation of Time Efficient Digital Signal Processing Software IEEE trans. ASSP, vol. ASSP-25, n.1, February 1977, pp.74–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cavazza, M., Ciaramella, A., Pacificl, R. (1985). Implementation of an Acoustical Front-End for Speech Recognition. In: De Mori, R., Suen, C.Y. (eds) New Systems and Architectures for Automatic Speech Recognition and Synthesis. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82447-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82447-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82449-4

  • Online ISBN: 978-3-642-82447-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics