Advertisement

Use of Cyclic Matrices to Obtain Analytic Expressions for Crystals

  • Philippe Audit
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 58)

Abstract

Whereas the recursion method [1,2] allows to calculate the electronic structure of systems without any symmetry, a profitable use of cyclic matrix functions (CMF) requires the presence of some translational symmetry. Actually, the latter can be often more fully exploited using CMF rather than Bloch waves. The distinct advantages offered by CMF include in particular: first the possibility to deal directly with the physical properties expressible in terms of some element or the trace of a CMF, so bypassing the band structure calculation in situations where it is irrelevant. Second, it is applicable to functions of several cyclic matrices, not merely a single one (the Hamiltonian for instance), thereby offering an analytic solution for the difficulty associated with the nonorthogonality of the localized orbitals. Third, the assumption of an infinite lattice, an integral step in band structure calculations, appears to be superfluous here, as CMF can be defined and analytically expressed for lattices of finite size. Fourth, CMF exhibit a good flexibility to be perturbed by the presence of defects, in a way that is well referenced to bulk properties.

Keywords

Band Structure Calculation Recursion Method Bloch Wave Reciprocal Vector Cyclic Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Haydock,V. Heine,M. Kelly,J.Phys. C5, 2845 (1972)Google Scholar
  2. 2.
    R. Haydock in Solid State Physics, ed. by Ehrenreich,F.Seitz,D.Turnbull (Acad.Press, N.Y. 1980 ), vol. 35,p. 215.Google Scholar
  3. 3.
    Ph. Audit,J.Physique 42,90.3(1981); and to be publishedGoogle Scholar
  4. 4.
    F.K. Schulte,Surf.Sci. 55, 427 (1976)Google Scholar
  5. 5.
    R.P. Messmer,Phys.Rev.6T5,1811(1977)Google Scholar
  6. 6.
    P.O. Löwdin,R.Pauncz,J.deHeer,J.Math.Phys. 1, 461 (1960)Google Scholar
  7. 7.
    M. Abramowitz,J.Stegun,Handbook of Mathematical Functions (Dover 1970)Google Scholar
  8. 8.
    R. Jellitto,Phys.Chem.Solids, 30, 609 (1969)Google Scholar
  9. 9.
    T. Wolfram,S. Ellialtioglu,Phys.Rev. B25, 2697 (1982)Google Scholar
  10. 10.
    T. Ahlenius,J.L. Calais,P.O.Löwdin,J.Phys. C6, 1896 (1973)Google Scholar
  11. 11.
    O. Bilek,L. Skala,L. Könne,Phys.Stat.Sol. b17, 675 (1983)Google Scholar
  12. 12.
    P.O.Löwdin,Adv.Phys.5,1(1956);Adv.Quant.Chem.5,185(1970)Google Scholar
  13. 13.
    A.R. Williams,P.J. Feibelman,N.D.Lang,Phys.Rev.B26(1982)Google Scholar
  14. 14.
    J. Friedel,Adv.Phys. 3, 446 (1954)Google Scholar
  15. 15.
    E.W. Montroll,P.B.Potts,Phys.Rev. 100, 525 (1955)MathSciNetGoogle Scholar
  16. 16.
    E.N. Economou,Green’s functions in Quantum Physics(Springer-Verlag,Berlin 1983)Google Scholar
  17. 17.
    Ph. Audit, Phys.Rev.B30,(1 Oct.1984 )Google Scholar
  18. 18.
    F. Cyrot-Lackmann,Surf.Sci. 15, 535 (1968)Google Scholar
  19. 19.
    G. Allan, Ann.Phys. 5, 169 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Philippe Audit
    • 1
  1. 1.Laboratoire PMTMUniversité Paris-NordVilletaneuseFrance

Personalised recommendations