Skip to main content

Evolution of Physical Models for ZnO-Varistors

  • Conference paper
Polycrystalline Semiconductors

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 57))

Abstract

The highly nonlinear conduction mechanism in ZnO based ceramics has attracted growing interest during the past decade. With increasing experimental experience model approaches have drifted from mechanisms related to massive non-zinc oxide intergranular layers like space charge limited current or Nordheim-Fowler tunneling to grain boundary effects where ZnO itself plays the dominant role. Firstly several attempts were made with surface state density distributions of foreign atoms. To allow for the measured high nonlinearity coefficient α in the range of α = 70 or even more, additional effects have been taken into account arising from the generation of minority carriers — voltage dependent shortening of the spatial distance of energy states which are involved in quantum mechanical tunneling, or the barrier height control by capture of holes at surface states. In fact recent experimental work gives strong evidence for the presence of minority carriers above threshold voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. M.S. Kosman and E.G. Pettsold, Uchenye Zapisky Leningr. Gosudarst. Pedagog. 207, 191 (1961)

    CAS  Google Scholar 

  2. Kh. S. Valeyev and M.D. Mashkovich, J. Techn. Phys. (USSR) 27, 1649 (1957)

    Google Scholar 

  3. R.A. Delaney and Kaiser, H.D., IEEE Trans, on Parts, Mat. and Packaging, Vol. PMP2 No. 1/2 (1966

    Google Scholar 

  4. M. Matsuoka, Jpn. J. Appl. Phys. 10 (6), 736 (1971)

    Article  CAS  Google Scholar 

  5. R.H. Bube, Photoconductivity of Solids, Wiley and Sons, New York (1960)

    Google Scholar 

  6. R. Einzinger, Ber. Dt. Ker. Ges. 52 (7), 244 (1975]

    CAS  Google Scholar 

  7. J.T.C. van Kemenade and R.K. Eijnthoven, Ber. Dt. Ker. Ges. 55 (6), 330 (1978)

    Google Scholar 

  8. G.D. Mahan, L.M. Levinson and H.R. Philipp, Appl. Phys. Lett. 33 (9], 830 (1978)

    Article  CAS  Google Scholar 

  9. D.L. Krivanek and P. Williams, Appl. Phys. Lett. 34 (11), 805 (1979)

    Article  CAS  Google Scholar 

  10. L.M. Levinson and H.R. Philipp, GE Rept. 75, CRD 175 (1975)

    Google Scholar 

  11. Dr.R. Clarke, J. Appl. Phys. 49, 2407 (1978)

    Article  CAS  Google Scholar 

  12. R. Einzinger, Appl. Surf. Sci. 3, 390–408 (1979)

    Article  CAS  Google Scholar 

  13. S.M. Sze, Physics of semiconductor devices, Wiley, New York (1969)

    Google Scholar 

  14. G.D. Mahan, L.M. Levinson, H.R. Philipp, J. Appl. Phys. 50 (4], 2799 (1979)

    Article  CAS  Google Scholar 

  15. J. Bernasconi, H.P. Klein and Strässler, J. Electron. Mat. 5 (5) (1976)

    Google Scholar 

  16. J.D. Levine, CRC Crit. Rev. Sol. St. Sci. 5, 597 (1975)

    CAS  Google Scholar 

  17. G.E. Pike and C.H. Seager, J. Appl. Phys. 50 (5), 3414–3422 (1979)

    Article  CAS  Google Scholar 

  18. P.L. Hower, T.K. Gupta, J. Appl. Phys. 50 (7], 4847 (1979)

    Article  CAS  Google Scholar 

  19. R. Einzinger, Adv. in Ceramics, Vol. 1, 359–374 (1981)

    CAS  Google Scholar 

  20. G. Gattow and D. Schütze, Z. anorg. Chem. 328, 44 (1964)

    Article  CAS  Google Scholar 

  21. M. Inada, Jpn. J. Phys. 18 (8), 1439 (1979)

    Article  CAS  Google Scholar 

  22. H.A. Harwig and A.G. Gerards, J. sol. st. Chem. 26, 265 (1978)

    Article  CAS  Google Scholar 

  23. R. Einzinger, Dissertation TU München, 168, (1982)

    Google Scholar 

  24. T.K. Gupta, W.G. Carlson and B.O. Hall, Mat. Res. Soc. Symposia Proc. 5, New York, 393–399 (1982)

    Google Scholar 

  25. G.D. Mahan, L.M. Levinson and H.R. Philipp, Appl. Phys. Lett. 33 (9), 830–832 (1978)

    Article  CAS  Google Scholar 

  26. G.E. Pike, Symposium on Grain Boundaries, Mat. Res. Soc. Boston (1981)

    Google Scholar 

  27. G.E. Pike, Mat. Res. Soc. Symposia, Proc. 5, 369–379 (1982) New York

    Google Scholar 

  28. B. Schallenberger and A. Hausmann, Z. Phys. B44, 143 (1981)

    Article  Google Scholar 

  29. G. Heiland, Z. Phys. 148, 15 (1957)

    Article  CAS  Google Scholar 

  30. A. Shimizu et al, Jpn J. Appl. Phys. 17 (8), 1435 (1978)

    Article  CAS  Google Scholar 

  31. R. Einzinger, Mat. Res. Soc. Symposia Proc. 5, 343–355 (1982)

    Google Scholar 

  32. G.M. Safranow, Russ. J. Anorg. Chem. 16 (3), 460 (1971)

    Google Scholar 

  33. F.A. Kröger, The Chemistry of Imperfect Crystals, Amsterdam (1964)

    Google Scholar 

  34. R. Wernicke, Dissertation RWTM Aachen, 21 (1975)

    Google Scholar 

  35. U. Schwing, Dissertation Univ. Karlsruhe, 110 (1984)

    Google Scholar 

  36. G.D. Mahan, J. Appl. Phys. 54 (7), 3825–3832 (1983)

    Article  CAS  Google Scholar 

  37. F. Greuter, Contribution to Symposium on Polykristalline Halbleiter, MPI Stuttgart (Febr. 1984)

    Google Scholar 

  38. I. Baumgartner and R. Einzinger, Proc. 5th Int. Round Table Conf on Sintering, Portoroz, Yugoslavia, 367–371 (1981)

    Google Scholar 

  39. I. Baumgartner, Dissertation Univ. München, 142 (1983)

    Google Scholar 

  40. W. Heywang, Amorphe und Polykristalline Halbleiter, Band 8, Springer-Verlag, 201–237 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Einzinger, R. (1985). Evolution of Physical Models for ZnO-Varistors. In: Harbeke, G. (eds) Polycrystalline Semiconductors. Springer Series in Solid-State Sciences, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82441-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82441-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82443-2

  • Online ISBN: 978-3-642-82441-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics