Advertisement

Energy Dissipation Under Time-Dependent Local Perturbations

  • K. Makoshi
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 59)

Abstract

When an atom is moving near a metal surface, we often consider the motion of the atom in a given classical trajectory (trajectory approximation). The atom can be regarded as a source of a time-dependent perturbation to the electrons at the metal surface. Since the electron-hole pair excitation is possible with arbitrarily small energy in the metal, we expect the nonadiabatic process even when the atomic motion is slow [1–5].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Müller-Hartmann, T.V. Ramakrishnan and G. Toulouse: Solid State Commun. 9, 99 (1971)CrossRefGoogle Scholar
  2. E. Müller-Hartmann, T.V. Ramakrishnan and G. Toulouse: Phys. Rev. B3, 1102 (1971)Google Scholar
  3. 2.
    J.K. Nørskov and B.I. Lundqvist: Surf. Sci. 89, 251 (1970)CrossRefGoogle Scholar
  4. 3.
    K. Schönhammer and O. Gunnarsson: Phys. Rev. B22, 1629 (1980)Google Scholar
  5. 4.
    R. Brako and D.M. Newns: Solid State Commun. 33, 713 (1980)CrossRefGoogle Scholar
  6. R. Brako and D.M. Newns: J. Phys. C14, 3065 (1981)Google Scholar
  7. 5.
    P. Minnhagen: J. Phys. C15, 2293 (1982)Google Scholar
  8. 6.
    P. Nozifères and C.T. de Dominicis: Phys. Rev. 178, 1097 (1969)CrossRefGoogle Scholar
  9. 7.
    S. Doniach and M. Šunjič: J. Phys. C3, 285 (1970)Google Scholar
  10. S. Doniach: Phys. Rev. B2, 3898 (1970)Google Scholar
  11. 8.
    N.I. Muskhelishvili: Singular Integral Equations, edited by J.R.M. Radok (P. Noordhoff N.V., Gronigen 1953)Google Scholar
  12. 9.
    P.W. Anderson: Phys. Rev. Lett. 18, 1049 (1967)CrossRefGoogle Scholar
  13. 10.
    D.R. Hamann: Phys. Rev. Lett. 26, 1030 (1971)CrossRefGoogle Scholar
  14. 11.
    K. Yamada and K. Yosida: Prog. Theor. Phys. 59, 1061 (1978)CrossRefGoogle Scholar
  15. K. Yamada and K. Yosida: Prog. Theor. Phys. 60, 353 (1978)CrossRefGoogle Scholar
  16. 12.
    K. Yamada and K. Yosida: Prog. Theor. Phys. 62, 363 (1979)CrossRefGoogle Scholar
  17. K. Yamada and K. Yosida: Prog. Theor. Phys. 68, 1504 (1982)CrossRefGoogle Scholar
  18. 13.
    S. Tomonaga: Prog. Theor. Phys. 5, 544 (1950)CrossRefGoogle Scholar
  19. 14.
    K. Schönhammer: Z. Phys. B45, 23 (1981)CrossRefGoogle Scholar
  20. 15.
    K. Makoshi: J. Phys. C16, 3617 (1983)Google Scholar
  21. 16.
    L.V. Keldysh: Sov. Phys. — JETP 20, 1018 (1965)Google Scholar
  22. 17.
    A. Blandin, A. Nourtier and D.W. Hone: J. Physique 37, 369 (1976)CrossRefGoogle Scholar
  23. 18.
    A. Nourtier: J. Physique 38, 479 (1977)Google Scholar
  24. 19.
    A. Yoshimori and J-L. Motchane: J. Phys. Soc. Jpn 51, 1826 (1982)CrossRefGoogle Scholar
  25. 20.
    A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinskii: Method of Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc., Englewood Cliffs)Google Scholar
  26. 21.
    A. Nourtier: to be publishedGoogle Scholar
  27. 22.
    K. Schönhammer and O. Gunnarsson: in this volumeGoogle Scholar
  28. 23.
    J.E. Inglesfield: Surf. Sci. 127, 555 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Makoshi
    • 1
  1. 1.Department of Material Physics, Faculty of Engineering ScienceOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations