Advertisement

Adsorbate-Surface Interactions

  • J. K. Nørskov
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 59)

Abstract

Calculations of the adiabatic potential energy surface for atoms and molecules interacting with metal surfaces based on the effective medium theory are reviewed. For atomic chemisorption, the full potential energy surface has been calculated in a number of cases and the properties of the interaction potential can be related to the parameters describing the atom and surface in question. For molecular chemisorption and surface reactions, the effective medium theory can be used to make comparisons between binding energies and activation energies.

Keywords

Potential Energy Surface Effective Medium Theory Chemisorption Energy Surface Electron Density Effective Medium Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Schrieffer, J. Vac. Sci. Technol. 13, 335 (1976)CrossRefGoogle Scholar
  2. 2.
    J.K. Nørskov, J. Vac. Sci. Technol. 18, 420 (1981)CrossRefGoogle Scholar
  3. 3.
    For a recent review, see e.g. Theory of the Inhomogeneous Electron Gas, ed. S. Lundqvist and N.H. March (Plenum Press, New York, 1983)Google Scholar
  4. 4.
    T.H. Upton and W.A. Goddard, Phys. Rev. Lett. 42, 472 (1979)CrossRefGoogle Scholar
  5. 5.
    P.J. Feibelman and D.R. Hamann, Sol. St. Commun. 34, 215 (1980)CrossRefGoogle Scholar
  6. 6.
    C. Umrigar and J.W. Wilkins, to be published.Google Scholar
  7. 7.
    N.D. Lang and A.R. Williams, Phys. Rev. B18, 616 (1978)Google Scholar
  8. 8.
    B.I. Lundqvist, O. Gunnarsson, H. Hjelmberg and J.K. Nørskov, Surf. Sci. 89, 196 (1979)CrossRefGoogle Scholar
  9. 9.
    J.K. Nørskov, A. Houmøller, P. Johansson and B.I. Lundqvist, Phys. Rev. Lett. 46, 257 (1981)CrossRefGoogle Scholar
  10. 10.
    J.K. Nørskov and N.D. Lang, Phys. Rev. B21, 2136 (1980);Google Scholar
  11. M.J. Stott and E. Zaremba, Phys. Rev. B22, 1564 (1980)Google Scholar
  12. 11.
    J.K. Nørskov, Phys. Rev. B26, 2875 (1982)Google Scholar
  13. 12.
    O.K. Andersen, H.L. Skriver, H. Nohl and B. Johansson, Pure Appl. Chem. 52, 93 (1979);CrossRefGoogle Scholar
  14. O.K. Andersen, in: The electronic structure of complex systems, NATO Advanced Study Institute, ed. W. Temmerman and P. Phariseau (Plenum Press, New York, 1982)Google Scholar
  15. 13.
    The most comprehensive calculations are those of M.J. Puska, R.M. Nieminen and M. Manninen, Phys. Rev. B24, 3037 (1980)Google Scholar
  16. 14.
    C. Umrigar, M. Manninen and J.K. Nørskov, to be publishedGoogle Scholar
  17. 15.
    P. Nordlander, S. Holloway and J.K. Nørskov, Surf. Sci. 136, 59 (1984)CrossRefGoogle Scholar
  18. 16.
    D.M. Newns, Phys. Rev. 178, 1123 (1969)CrossRefGoogle Scholar
  19. 17.
    B. Chakraborty, S. Holloway and J.K. Nørskov, to be published.Google Scholar
  20. 18.
    Close to the metal atoms there is a third contribution to the interaction energy, not included in (2), describing the interaction with the, metal cores [15]. This term can in some cases contribute to energy differences along the surface, in particular on top of a surface atom. In most other cases it is negligible [15,17]Google Scholar
  21. 19.
    R. DiFoggio and R. Gomer, Phys. Rev. B25, 3490 (1982)Google Scholar
  22. 20.
    M.J. Puska, R.M. Nieminen, M. Manninen, B. Chakraborty, S. Holloway and J.K. Nørskov, Phys. Rev. Lett. 51, 1081 (1983)CrossRefGoogle Scholar
  23. 21.
    See, for example, P.H. Holloway, J. Vac. Sci. Technol. 18, 653 (1981)CrossRefGoogle Scholar
  24. 22.
    J.K. Nørskov, S. Holloway and N.D. Lang, Surf. Sci. 137, 65 (1984)CrossRefGoogle Scholar
  25. 23.
    S. Holloway, B.I. Lundqvist and J.K. Nørskov, Proc. of the 8th Int. Congr. on Catalysis (Berlin, BRD, 1984)Google Scholar
  26. 24.
    See, for example, D.W. Goodman, R.D. Kelley, T.E. Madey and J.T. Yates, J. Catal. 63, 226 (1980);CrossRefGoogle Scholar
  27. E.I. Ko and R.J. Madix, Surf. Sci. 109, 221 (1980)CrossRefGoogle Scholar
  28. 25.
    See, for example, G. Ertl, S.B. Lee and M. Weiss, Surf. Sci. 114, 527 (1982);CrossRefGoogle Scholar
  29. G. Brodén, G. Gafner and H.P. Bonzel, Surf. Sci. 84, 295 (1979)CrossRefGoogle Scholar
  30. 26.
    D. Lachey, M. Surman and D.A. King, Vacuum 33, 867 (1983)CrossRefGoogle Scholar
  31. 27.
    M. Grunze, F. Bozo, G. Ertl and M. Weiss, Appl. Surf. Sci. 1, 241 (1978)CrossRefGoogle Scholar
  32. 28.
    N.D. Lang, S. Holloway and J.K. Nørskov, to be publishedGoogle Scholar
  33. 29.
    P.J. Feibelman and D.R. Hamann, Phys. Rev. Lett. 52, 61 (1984);CrossRefGoogle Scholar
  34. R.W. Joyner, J.B. Pendry, D.K. Saldin and S.R. Tennison, Surf. Sci. 138, 84 (1984)CrossRefGoogle Scholar
  35. 30.
    S. Andersson, P.-A. Karlsson and M. Persson, Phys. Rev. Lett. 51, 2378 (1983), and private communicationCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. K. Nørskov
    • 1
  1. 1.NORDITACopenhagenDenmark

Personalised recommendations