Stochastic Approach to Study the Fracture and Fatigue of Concrete

  • H. Mihashi
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Concrete contains a lot of material defects with various size, shape and orientation. Hence a stochastic approach is essential to study the fracture and fatigue of such heterogeneous materials. The present paper describes fundamental concepts of a stochastic theory for fracture and fatigue of concrete. Since the theory is based on a physically relevant probability model, it is possible to express statistical properties of the fracture and fatigue satisfactorily. Moreover, this provides a realistic basis for a mathematical formulation to describe influences of such factors on strength as rate of loading, environmental temperature, porosity, specimen size and also on fatigue life as an amplitude of cyclic loads. Some theoretical predictions are compared with previously published experimental results and critically discussed.


Fatigue Life Survival Probability Failure Process Cement Paste Specimen Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freudenthal, A.M.: Statistical approach to brittle fracture. Fracture II. ed. by H. Liebowitz, Academic Press (1968) 592–619.Google Scholar
  2. 2.
    Jayatilaka, A. de S.: Fracture of engineering brittle materials. Applied Sci. Publishers 1979.Google Scholar
  3. 3.
    Weibull, W.: A statistical theory of the strength of materials. Proc. Roy. Swedish Inst. of Eng. Res., 151, Stockholm (1939); The phenomena of rupture in solids. ibid. 153, Stockholm (1939).Google Scholar
  4. 4.
    Hori, M.: Statistical aspects of fracture in concrete, I. Jour. Physic. Soc. Japan, 14, 10 (1959) 1444–1452.CrossRefADSGoogle Scholar
  5. 5.
    Mihashi, H.; Izumi, M.: A stochastic theory for concrete fracture. Cement and Concrete Res. 7 (1977) 411–421.CrossRefGoogle Scholar
  6. 6.
    Mihashi, H.; Izumi, M.: A stochastic theory for fatigue fracture of concrete. Trans. Japan Concrete Inst. 2 (1980) 203–210.Google Scholar
  7. 7.
    Wittmann, F.H. (ed.): Fracture mechanics of concrete. Elsevier 1983.Google Scholar
  8. 8.
    Mihashi, H.; Wittmann, F.H.: Stochastic approach to study the influence of rate of loading on strength of concrete. Heron 25, 3 (1980) 1–54Google Scholar
  9. 9.
    Yokobori, T.: An interdisciplinary approach to fracture and strength of solids. Wolters-Noordhoff Ltd. (1968).Google Scholar
  10. 10.
    Mihashi, H.: A stochastic theory for fracture of concrete. Fracture mechanics of concrete, ed. by F.H. Wittmann, Elsevier (1983) 301–339.Google Scholar
  11. 11.
    Sawaki, Y.; Yokobori, T.: A stochastic theory approach to fracture of solids combining microscopic and macroscopic variables. Rep. Res. Inst. Strength and Fracture of Materials, Tohoku Univ., 9 (1973) 25–34.Google Scholar
  12. 12.
    Powers, T.C.; Brownyard, T.L.: Studies of the physical properties of hardened portland cement paste. Jour. of Amer. Conc. Inst., 18, 6 (1947) 669–712.Google Scholar
  13. 13.
    Roy, D.M.; Gouda, G.R.: Optimization of strength in cement pastes. Cement and Concrete Res. 5 (1975) 153–162.CrossRefGoogle Scholar
  14. 14.
    Feldman, R.F.; Beaudoin, J.J.: Structure and properties of porous cement systems and their modification by impregnants. Proc. Conf. Hydraulic Cement Paste (Sheffield) (1976) 150–165.Google Scholar
  15. 15.
    Davidge, R.W.; Evans, A.G.: Strength of ceramics. Mater. Sci. Eng., 6, 5 (1970) 281–298.CrossRefGoogle Scholar
  16. 16.
    Mihashi, H.; Izumi, M.: Deformation and fracture of concrete under cyclic loads. Theoretical and Applied Mechanics. 32 (1984) 445–452.Google Scholar
  17. 17.
    Higgins, D.D.; Bailey, J.E.: A microstructural investigation of the failure behaviour of cement paste. Proc. Conference on Hydraulic Cement Paste (Sheffield) (1976) 283–296.Google Scholar
  18. 18.
    Yoshimoto, A.; Kawasaki, K; Kawakami, M.: Microscopic cracks in cement matrix and deformation behaviour of concrete. Proc. 19th Congr. Materials Res. Kyoto (1976) 126–131.Google Scholar
  19. 19.
    Leeuwen, J. van; Siemes, A.J.M.: Fatigue of concrete, constant amplitude tests and program loading tests on plain concrete. Rep. Stupoc-III-3 (1977), (in Dutch).Google Scholar
  20. 20.
    Reinhardt, H.W.; Stroeven, P; Uijl, J.A. den; Kooistra, T.R.; Vrencken, J. H.A.M.: Einfluß von Schwingbreite, Belastungshöhe and Frequenz auf die Schwingfestigkeit von Beton bei niedrigen Bruchlastwechselzahlen. Betonwerk + Fertigteil-Technik, 44, 9 (1978) 498–503.Google Scholar
  21. 21.
    Spetla, Z.; Kadledek, V.: Effect of the slenderness on the direct tensile strength of concrete cylinders and prisms. Bulletin RILEM, 33 (1966).Google Scholar
  22. 22.
    Kondo, Y.; Ban, S. (eds.): Concrete Handbook. Sakurai Book Co. 1957. (in Japanese).Google Scholar
  23. 23.
    Rajendran, S.: Effect of the size of the specimen on the compressive strength of concrete. Bulletin RILEM, 26 (1965).Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1985

Authors and Affiliations

  • H. Mihashi
    • 1
  1. 1.Department of Architecture, Faculty of EngineeringTohoku UniversitySendai 980Japan

Personalised recommendations