High Resolution Spectral Atlas of NO2 Between 559 and 597 nm

  • Kiyoji Uehara
  • Hiroyuki Sasada
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 41)

Abstract

The spectral atlas following Chap. 4 consists of the absorption spectrum and the Stark modulation spectrum of NO2, divided into 179 charts, along with the wave-number tables of the observed absorption peaks. The cw dye laser used as a light source had a very narrow spectral width, so that the observed spectra are essentially Doppler-limited. Argon absorption lines were used for wave-number calibration. The spectral interval covered by the measurements is 559–597 nm (16751–17885 cm−1), which is the major part of the tuning range of a Rhodamine 6G dye laser. Each of the 179 sets of traces was recorded in a single scan over a frequency range of ≌ 7 cm−1. The total number of peaks listed in the tables is about 13 300.

Keywords

Quartz Dioxide Microwave Argon Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    D.K. Hsu, D.L. Monts, R.N. Zare: Spectral Atlas of Nitrogen Dioxide 5530 to 6480 Å (Academic, New York 1978)Google Scholar
  2. 2.2
    K. Uehara, K. Shimoda: Jpn. J. Appl. Phys. 16, 633 (1977)CrossRefADSGoogle Scholar
  3. 2.3
    K. Uehara, H. Sasada, T. Kasuya: To be publishedGoogle Scholar
  4. 2.4
    G.H. Williams, J.L. Hobart, T.F. Johnston, Jr.: “A 10-THz Scan Range Dye Laser”, in Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol. 40 (Springer, Berlin, Heidelberg 1983) p. 422Google Scholar
  5. 2.5
    T.A. Littlefield, D.T. Turnbull: Proc. Roy. Soc. (London) A218, 577 (1953)ADSGoogle Scholar
  6. 2.6
    A.D. Buckingham, D.A. Ramsey: J. Chem. Phys. 42, 3721 (1965)CrossRefADSGoogle Scholar
  7. 2.7
    K. Uehara: Opt. Lett. 6, 191 (1981)CrossRefADSGoogle Scholar
  8. 2.8
    K. Uehara: “Stark Modulation Spectroscopy in the Visible Region”, in Laser Spectroscopy V, ed. by A.R.W. McKellar, T. Oka, B.P. Stoicheff, Springer Ser. Opt. Sci., Vol.30 (Springer, Berlin, Heidelberg 1981) p. 89Google Scholar
  9. 2.9
    R.S. Mulliken: Can. J. Chem. 36, 10 (1958)CrossRefGoogle Scholar
  10. 2.10
    J.B. Coon, F.A. Cesani, F.P. Huberman: J. Chem. Phys. 52, 1647 (1970)CrossRefADSGoogle Scholar
  11. 2.11
    R. Solarz, D.H. Levy, K. Abe, R.F. Curl: J. Chem. Phys. 60, 1158 (1974)CrossRefADSGoogle Scholar
  12. 2.12
    J. Hinze, R. Solarz, D.H. Levy: Chem. Phys. Lett. 25, 284 (1974)CrossRefADSGoogle Scholar
  13. 2.13
    M. Krauss, R. J. Celotta, S.R. Mielczarek, C.E. Kuyatt: Chem. Phys. Lett. 27, 285 (1974)CrossRefADSGoogle Scholar
  14. 2.14
    C.E. Jackels, E.R. Davidson: J. Chem. Phys. 64, 2908 (1976)CrossRefADSGoogle Scholar
  15. 2.15
    C.G. Stevens, R.N. Zare: J. Mol. Spectrosc. 56, 167 (1975)CrossRefADSGoogle Scholar
  16. 2.16
    T. Tanaka, R. W. Field, D.O. Harris: J. Mol. Spectrosc. 56, 188 (1975)CrossRefADSGoogle Scholar
  17. 2.17
    J.C.D. Brand, W.H. Chan, K.A. Davis, J.L. Hardwick: J. Mol. Spectrosc. 54, 74 (1975)CrossRefADSGoogle Scholar
  18. 2.18
    R.E. Smalley, L. Wharton, D.H. Levy: J. Chem. Phys. 63, 4977 (1975)CrossRefADSGoogle Scholar
  19. 2.19
    K. Uehara: To be publishedGoogle Scholar
  20. 2.20
    F. Bylicki, H.G. Weber: Chem. Phys. 70, 299 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Kiyoji Uehara
    • 1
  • Hiroyuki Sasada
    • 1
  1. 1.Faculty of Science and TechnologyKeio UniversityKohoku-ku, Yokohama 223Japan

Personalised recommendations