Skip to main content

Fundamentals of Boundary Integral Equation Methods in Elastodynamics

  • Chapter
Time-dependent and Vibration Problems

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 2))

Abstract

The boundary integral equation method (BIEM) is one of the most effective techniques for elastodynamics, specifically suitable for exterior problems since it is able to manage the infinite domain directly. This is also advantageous over the conventional domain type methods such as the finite element method (FEM) and the finite difference method (FDM). Moreover, BIEM reduces the number of unknowns drastically compared with the domain type techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, G., see Hydrodynamics. H. Lamb, § 43, § 58, Dover, 1954

    Google Scholar 

  2. Betti, E., see A Treatise on the Mathematical Theory of Elasticity. A.E. Love, § 121, Dover, 1944

    Google Scholar 

  3. Somigliana, C, see A.E. Love, loc. cit. § 169

    Google Scholar 

  4. Kirchhoff, G., see A.E. Love, loc. cit. § 210.

    Google Scholar 

  5. Baker, B.B. and Copson, E.T.,The Mathematical Theory of Huygens’s Principle. 2nd ed. Oxford Univ. Press, 1950

    Google Scholar 

  6. Fredholm, I., see Three-dimensional Problems of Mathematical Theory of Elasticity and Thermoelasticity. V.D. Kupradze (ed.), North-Holland, 1979

    Google Scholar 

  7. Kellogg, O.D., Foundations of Potential Theory. Springer-Verlag, 1929

    Google Scholar 

  8. Muskhelishivili, N.I., Singular Integral Equations (transl. by Radok, J.R.M.). Noordhoff, 1953

    Google Scholar 

  9. Mikhlin, S.G., Multidimensional Singular Integrals and Integral Equations. Pergamon, 1965

    MATH  Google Scholar 

  10. Kupradze, V.D., Potential Methods in the Theory of Elasticity. Israel Progr. Sci. Transl., Jerusalem, 1965

    Google Scholar 

  11. Kupradze, V.D. (ed.), Three-dimensional Problems of the Mathematical Theory of I Elasticity and Thermoelasticity. North-Holland, 1979

    Google Scholar 

  12. Love, A.E., A Treatise of the Mathematical Theory of Elasticity. Dover, 1944

    MATH  Google Scholar 

  13. Morse, P.M. and Feshbach, H., Method of Theoretical Physics. McGraw-Hill, 1953

    Google Scholar 

  14. Eringen, A.C. and Suhubi, E.S., Elastodynamics. Academic Press, 1975

    MATH  Google Scholar 

  15. Achenbach, J.D., Wave Propagation in Elastic Solids. North Holland, 1973

    MATH  Google Scholar 

  16. Graff, K.F., Wave Motion in Elastic Solids. Oxford Univ. Press, 1975

    MATH  Google Scholar 

  17. Pao, Y.H. and Mow, C.C., Diffraction of Elastic Waves and Dynamic Stress Concen- % trations. Crane-Russak, 1972

    Google Scholar 

  18. Ewing, W.M., Jardetzky, W.S., and Press, F., Elastic Waves in Layered Media. McGraw-Hill, 1957

    MATH  Google Scholar 

  19. Wheeler, C.T. and Sternberg, E., Some theorems in classical elastodynamics. Arch. Rat. Mech. Anal. 31, 51–90, 1968

    MATH  MathSciNet  Google Scholar 

  20. Friedman, M.B. and Shaw, R.P., Diffraction of pulses by cylindrical obstacles of arbitrary cross-section. J. Appl. Mech. 29,40–46, 1962

    MATH  MathSciNet  Google Scholar 

  21. Chen, L.H. and Schweikert, J., Sound radiation from an arbitrary body. J. Acoust. Soc. Am. 35,1626–1632, 1963

    MathSciNet  Google Scholar 

  22. Banaugh, R.P. and Goldsmith, W., Diffraction of steady acoustic waves by surfaces of arbitrary shape. J. Acoust. Soc. Am. 35,1590 -1601,1963

    MathSciNet  Google Scholar 

  23. Banaugh, R.P. and Goldsmith, W., Diffraction of steady elastic waves by surfaces of arbitrary shape. J. Appl. Mech. 29, 589–597, 1963

    Google Scholar 

  24. Rizzo, F., An integral equation approach to boundary value problems of classical elastostatics. Quart. Appl. Math. 25,83–95, 1967

    MATH  Google Scholar 

  25. Cruse, J.A., and Rizzo, F., A direct formulation and numerical solution of the general transient elastodynamic problems, I. J. Math. Anal. Appl. 22,244–259, 1968

    MATH  Google Scholar 

  26. Cruse, J.A., A direct formulation and numerical solution of the general transient elastodynamic problems, II. J. Math. Anal. Appl. 22,341–355, 1968

    MATH  Google Scholar 

  27. Manolis, G.D. and Beskos, D.E., Dynamic stress concentration studies by boundary integrals and Laplace transform. Int. J. num. Meth. Engng. 17,573–599, 1981

    MATH  Google Scholar 

  28. Manolis, G.D., A comparative study on three boundary element method approaches to problems in elastodynamics. Int. J. num. Meth. Engng. 19, 73–91, 1983

    MATH  Google Scholar 

  29. Manolis, G.D. and Beskos, D.E., Dynamic response of lined tunnels by an isoparametric boundary element method. Comp. Meth. Appl. Mech. Engng. 36,291–307, 1983

    MATH  Google Scholar 

  30. Niwa, Y., Kobayashi, S., and Yokota, Y., Application of integral equation methods to the determination of static and steady-state dynamic stresses around cavities of arbitrary shape. Proc. Japan Soc. Civil Eng. 195, 27–35 (in Japanese), 1971

    Google Scholar 

  31. Niwa, Y., Kobayashi, S., and Azuma, N., An analysis of transient stresses produced li around cavities of an arbitrary shape during the passage of travelling wave. Memo. Fac. Eng., Kyoto Univ. 37,28–46, 1975

    Google Scholar 

  32. Niwa, Y., Kobayashi, S., and Fukui, T., Application of integral equation method to some geomechanical problems. Proc. 2nd Int. Conf. Num. Meth. Geomech., 120–131, ASCE, 1976

    Google Scholar 

  33. Kobayashi, S. and Nishimura, N., Dynamic analysis of underground structures by the integral equation method. Proc. 4th Int. Conf. Num. Meth. Geomech. 1, 401–409, Balkema, 1982

    Google Scholar 

  34. Kobayashi, S. and Nishimura, N., Transient Stress Analysis of Tunnels and Cavities of Arbitrary Shape due to Travelling Waves. Chapt. 7 of Developments in Boundary Element n Methods - 2. P.K. Banerjee and R.P. Shaw (eds.), Applied Science, 1982

    Google Scholar 

  35. Tai, G.R.C. and Shaw, R.P., Helmholtz equation eigenvalues and eigenmodes for I arbitrary domains. J. Acoust. Soc. Am. 56,796–804,1974

    Google Scholar 

  36. De Mey, G., Calculation of eigenvalues of Helmholtz equation by an integral equation. Int. J. num. Meth. Engng. 10,59–66, 1976

    MATH  Google Scholar 

  37. Augirre-Ramirez, G. and Wong, J. P., Eigenvalues of the Helmholtz equation by boundary integral equation-finite element method. Proc. Int. Symp. Innovative Num. Anal, in Appl. Eng. Sei., CETIM, Versailles, 107–110,1977

    Google Scholar 

  38. Hutchinson, J.R., Determination of membrane vibrational characteristics by the boundary integral equation methods. Recent Advances in Boundary Element Methods. C.A. Brebbia (ed.), 301–316, Pentech Pr., 1978

    Google Scholar 

  39. Vivoli, J. and Filippi, P., Eigenfrequencies of thin plates and layer potentials. J. Acoust. Soc. Am. 55,562–567, 1974

    MATH  Google Scholar 

  40. Niwa, Y., Kobayashi, S., and Kitahara, M., Applications of integral equation method to eigenvalue problems of elasticity. Proc. Japan Soc. Civil Eng. 285, 17–28 (in Japanese), 1979

    Google Scholar 

  41. Niwa, Y., Kobayashi, S., and Kitahara, M., Eigenfrequency analysis of a plate by the integral equation method. Theoret. Appl. Mech. 29, 287–307, Univ. of Tokyo Press, 1981

    Google Scholar 

  42. Niwa, Y., Kobayashi, S., and Kitahara, M., Determination of Eigenvalues by Boundary Element Methods. Chapt. 6 of Developments in Boundary Element Methods — 2. P.K. Banerjee and R.P. Shaw (eds.), Applied Science, 1982

    Google Scholar 

  43. Cole, D.M., Kosloff, D.D., and Minster, J.B., A numerical boundary integral equation method for elastodynamics, I. Bui. Seismo. Soc. Am. 68, 1331 -1357, 1978

    Google Scholar 

  44. Mansur, W.J. and Brebbia, C.A., Numerical implimentation of the boundary element method for two dimensional transient scalar wave propagation problems. Appl. Math. Model. 6,299–306, 1982

    MATH  Google Scholar 

  45. Niwa, Y., Fukui, T., Kato, S., and Fujiki, K., An application of the integral equation method to two-dimensional elastodynamics. Theoret. and Appl. Mech. 28,281–290, Univ. of Tokyo Pr., 1980

    Google Scholar 

  46. Mansur, W.J. and Brebbia, C.A., Transient elastodynamics using a time-stepping technique. Boundary Elements. C.A. Brebbia, T. Futagami, and M. Tanaka (eds.), 677–698, Springer, 1983

    Google Scholar 

  47. Shaw, R.P., Boundary Integral Equation Methods Applied to Wave Problems, Chapt. 6 of Developments in Boundary Element Methods — 1. P.K Banerjee and R. Butterfield (eds.), Applied Science Pub., 1979

    Google Scholar 

  48. Kleinman, R.E., and Roach, G.F., Boundary integral equations for the three dimensional Helmholtz equation. SIAM Review 16,214–236, 1974

    MATH  MathSciNet  Google Scholar 

  49. Banerjee, P.K. and Butterfield, R., Boundary Element Methods in Engineering Science. McGraw-Hillxxx, 1981

    MATH  Google Scholar 

  50. Brebbia, C.A. and Walker, S., Boundary Element Techniques in Engineering. Newness-Butterworths xxx, 1980

    MATH  Google Scholar 

  51. Dominguez, J. and Alarcon, E., Elastodynamics. Chapt. 7 of Progress in Boundary Element Methods - 1. C.A. Brebbia (ed.), Pentech Pr. xxx, 1981

    Google Scholar 

  52. Sternberg, E. and Gurtin, M.E., On the completeness of certain stress function in the linear theory of elasticity. Proc. 4th U.S. Nat. Congr. Appl. Mech. 2, 793–797, 1962, ASME

    Google Scholar 

  53. Sommerfeld, A., Partial Differential Equation in Physics. Academic Pr., 1949

    Google Scholar 

  54. Hartman, F., Computing the C-matrix in non-smooth boundary points. New Development in Boundary element Methods. C.A. Brebbia (ed.), 367–379, CML Pub., 1980

    Google Scholar 

  55. Ishihara, Y., An approach to BIE solution for Wave Equation. Graduation Work, Fac. of Eng. (in Japanese), 1983

    Google Scholar 

  56. Doyle, J.M., Radiation conditions in elasticity. ZAMP 16,527–531, 1965

    MathSciNet  Google Scholar 

  57. Srivastava, S. and Zischka, K.A., Radiation conditions and uniqueness theorem forn- dimensional wave equation in an infinite domain. J. Math. Anal. Appl. 45, 764–776, 1974

    MATH  MathSciNet  Google Scholar 

  58. Jawson, M.A. and Symm, G., Integral Equation Methods in Potential Theoty and Elastostatics. Academic Pr., 1977

    Google Scholar 

  59. Kitahara, M., Boundary Integral Equation Methods to Eigenvalue Problems of Elastodynamics and Thin Plates. Elsevier, 1985

    Google Scholar 

  60. Doyle, J.M., Integration of the Laplace transformed equations of classical elastokinetics. J. Math. Anal. Appl. 13,118–131, 1966

    MATH  MathSciNet  Google Scholar 

  61. Sladek, V. and Sladek, J., Boundary integral equation method in thermoelasticity, part I: General analysis. Appl. Math. Model. 7,241 -253,1983

    MATH  MathSciNet  Google Scholar 

  62. Niwa, Y., Kitahara, M., and Hirose, S., Elastodynamic problems for inhomogeneous bodies. Boundary Elements. C.A. Brebbia, T. Futagami, and M. Tanaka (eds.), 751–763, Springerxxx, 1983

    Google Scholar 

  63. Tanaka, M. and Tanaka, K., On boundary-volume element discretization of inhomogeneous elastodynamic problems. Appl. Math. Model. 5, 194–198, 1981

    MATH  Google Scholar 

  64. Lamb, H., Hydrodynamics, sect. 290, Dover, 1954

    Google Scholar 

  65. Copley, L.G., Integral equation method for radiation from vibrating bodies. J. Acoust. Soc. Am. 41,807–816, 1967

    Google Scholar 

  66. Schenk, H.A., Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 44, 45–58, 1968

    Google Scholar 

  67. Burton, A.J. and Miller, G.F., The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc. Roy. Soc. London, Ser. A,323,201–210, 1971

    MathSciNet  Google Scholar 

  68. Meyer, W.L., Bell, W.A., and Zinn, B.T., Boundary integral solutions of three dimensional acoustic radiation problems. J. sound and vib. 59,245–262, 1978

    MATH  Google Scholar 

  69. Terai, T., On calculation of sound fields around three dimensional objects by integral equation methods. J. sound and vib. 69,71–100, 1980

    MATH  Google Scholar 

  70. Greenspan, D. and Werner, P., A numerical method for the exterior Dirichlet problem for reduced wave equation. Arch. Rat. Mech. Anal. 23,288–316, 1966

    MATH  MathSciNet  Google Scholar 

  71. Kussmaul, R., Ein numerisches Verfahren zur Losung des Neumannschen Außenraum-problems fur die Helmholtzsche Schwingungsgleichung. Computing 4,246–262, 1979

    MathSciNet  Google Scholar 

  72. Filippi, P., Layer potentials and acoustic diffraction. J. sound, and vib. 54, 473–500, 1977

    MATH  Google Scholar 

  73. Ursell, F., On the exterior problems of acoustics. Proc. Cambridge Phil. Soc. 74, 117–125, 1973

    MATH  MathSciNet  Google Scholar 

  74. Jones, D.S., Integral equations for the exterior acoustic problem. Q. Jl. Mech. Appl. Math. 27,129–142, 1974

    MATH  Google Scholar 

  75. Kobayashi, S. and Nishimura, N., On the indeterminancy of BIE solutions for the exterior problems of time-harmonic elastodynamics and incompressible elastostatics. Boundary Element Methods in Engineering. C.A. Brebbia (ed.), 282–296, Springer, 1982

    Google Scholar 

  76. Kleinman, R.E. and Roach, G.F., On modified Green functions in exterior problems for the Helmholtz equation. Proc. Roy. Soc. London A 383,313–332, 1982

    MathSciNet  Google Scholar 

  77. Martin, R.A., On the null-field equations for the exterior problems of acoustics. Q. Jl. Mech. Appl. Math. 33,385–396, 1980

    MATH  Google Scholar 

  78. Kinoshita, M., Structure-Ground Dynamic Interaction Analysis by BIEM using Half-Plane Green’s Function. M. Sci. Thesis, Facul. of Eng., Kyoto Univ., 1983

    Google Scholar 

  79. Kobayashi, S. and Nishimura, N., Analysis of dynamic soil-structure interactions by boundary integral equation method. Num. Meth. in Eng., Proc. 3rd Int. Symp. Num. Meth. Eng. Paris 1,353–362, Pluralis, 1983

    Google Scholar 

  80. Kelly, D.W., Mustoe, G.W., and Zienkiewicz, O.C., On a hierarchical order for trial functions in numerical procedures based on satisfaction of the governing equations. Recent Advances in Boundary Element Methods. C.A. Brebbia (ed.), 359 — 373, Pentech Pr., 1978

    Google Scholar 

  81. Watson, J.O., Hermitian cubic boundary elements for plane problems of fracture mechanics. Res. Mech. 4,23–42, 1982

    Google Scholar 

  82. Kobayashi, S., Nishimura, N., and Kawakami, T., Simple layer potential method for domains having external corners. Appl. Math. Model. 8,61–65, 1984

    MATH  MathSciNet  Google Scholar 

  83. Hartman, F., The complementary problem of finite elastic bodies. New Developments in Boundary Element Methods. C.A. Brebbia (ed.), 229–246, 1980

    Google Scholar 

  84. Lera, S.G., Paris, E., and Alarcon, E., Treatment of singularities in 2-D domains using BIEM. Appl. Math. Model. 6,111 -118, 1982

    MATH  Google Scholar 

  85. Atkinson, C., Fracture Mechanics Stress Analysis. Chapt. 3. Progress in Boundary Element Methods - 2. C.A. Brebbia (ed.), Pentech Pr., 1983

    Google Scholar 

  86. Paris, F., Martin, A., and Alarcon, E., Potential Theory. Chapt. 3 of Progress in Boundary Element Methods - 1. C.A. Brebbia (ed.), Pentech Pr., 1981

    Google Scholar 

  87. Athanasiadis, G., Torsion prismatischer Stäbe nach der Singularitatenmethode. Ing. Arch. 49,89–96, 1980

    MATH  Google Scholar 

  88. Chaudonneret, M., On the discontinuity of the stress vector in the boundary integral equation method for elastic analysis. Recent Advances in Boundary Element Methods. C.A. Brebbia (ed.), 233–249, Pentech Pr., 1978

    Google Scholar 

  89. Wardle, L.J. and Crotty, J.M., Two-dimensional boundary integral equation analysis for non-homogeneous mining applications. Recent Advances in Boundary Element Methods. C.A. Brebbia (ed.), 233–249, Pentech Pr., 1978

    Google Scholar 

  90. Rudolphi, T.J., An implimentation of the boundary element method for zoned media with stress discontinuities. Int. J. num. Meth. Engng. 19, 1–15,1983

    MATH  Google Scholar 

  91. Alarcon, E., Martin, A., and Paris, F., Boundary elements in potential and elasticity theory. Computers and Structures 10,351–362, 1979

    MATH  Google Scholar 

  92. Shaw, R.P., Coupling boundary integral equation method to other numerical techniques. Recent Advances in Boundary Element Methods. C.A. Brebbia (ed.), 137–147, Pentech Press, 1978

    Google Scholar 

  93. Zienkiewicz, O.C., Kelly, D.W., and Bettess, P., Marriage a la mode — The best of both worlds (Finite Element and Boundary Integrals). Chapt. 5 of Energy Methods in Finite Element Analysis. Glowinski, R., Rodin, E.Y., and Zienkiewicz, O.C. (eds.), Wiley, 1979

    Google Scholar 

  94. Kelly, D.W., Mustoe, G.G.W., and Zienkiewicz, O.C., Coupling Boundary Element Methods with Other Numerical Methods. Chapt. 10 of Development in Boundary Element Methods - 1. P.K. Banerjee and R.P. Butterfield (eds.), 1979

    Google Scholar 

  95. Brebbia, C.A., The Boundary Element Methods for Engineers. Pentech Pr., 1978

    Google Scholar 

  96. Margulies, M., Combination of the boundary element and finite element methods. Chapt. 8 ofProgress in Boundary Element Methods — 1. C.A. Brebbia (ed.), 1981

    Google Scholar 

  97. Zienkiewicz, O.C., The Finite Element Method. 3rd ed., McGraw-Hill, 1977

    MATH  Google Scholar 

  98. Lachat, J.C. and Watson, J.D., Effective numerical treatment of boundary integral equations; A formulation for three-dimensional elastostatics. Int. num. Meth. Engng. 10, 991–1005, 1976

    MATH  Google Scholar 

  99. Stroud, A.H. and Secrest, D., Gaussian Quadrature Formula. Prentice-Hall, 1966

    Google Scholar 

  100. Cruse, T.A., An improved boundary-integral equation method for three-dimensional elastic stress analysis. Computers and Structures 4,741–754, 1974

    Google Scholar 

  101. Rizzo, F.J. and Shippy, D.J., An advanced boundary integral equation method for three-dimensional thermoelasticity. Int. J. num. Meth. Engng. 11,1753–1768, 1977

    MATH  Google Scholar 

  102. Katsikadis, J.T. and Armenakas, A.Z., Numerical evaluation of double integrals with a logarithmic or Cauchy-type singularity. J. Appl. Mech. 50,682–684,1983

    Google Scholar 

  103. Stippes, M. and Rizzo, F.J., A note on the body force integral of classical elastostatics. ZAMP 28,339–341, 1977

    MATH  Google Scholar 

  104. Cruse, T.A., Snow, D.W., and Wilson, R.B., Numerical solution in axisymmetri elasticity. Computers and Structures 7,445–451, 1977

    MATH  MathSciNet  Google Scholar 

  105. Danson, D., Linear Isotropic Elasticity with Body Forces. Chapt. 4 of Progress in Boundary Element Methods — 2. C.A. Brebbia (ed.), 1983

    Google Scholar 

  106. Cooley, J.W. and Tukey, J.W., An algorithm for machine calculation of complex Fourier series. Math. Comp. 19,297–301, 1965

    MATH  MathSciNet  Google Scholar 

  107. Brigham, E.O., The Fast Fourier Transform. Prentice-Hall, 1974

    MATH  Google Scholar 

  108. Davies, B. and Martin, B., Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. 33, 1 -32, 1979

    MATH  MathSciNet  Google Scholar 

  109. Narayanan, G.V. and Beskos, D.E., Numerical operational methods for time-dependent linear problems. Int. J. num. Meth. Engng. 18, 1829–1854,1982

    MATH  MathSciNet  Google Scholar 

  110. Durbin, F., Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Computer J. 17,371–376, 1974

    MATH  MathSciNet  Google Scholar 

  111. Baron, M.L. and Paraes, R., Displacements and velocities produced by the diffraction of pressure wave by a cylindrical cavity in an elastic medium. J. Appl. Mech. 29, 385–395, 1962

    MATH  Google Scholar 

  112. Fujiki, K, Analysis of the transient stresses around underground cavities by the integral equation method. M. Sci. Thesis, Kyoto Univ., 1980

    Google Scholar 

  113. Pao, Y.-H., Dynamic stress concentration in an elastic plate. J. Appl. Mech. 29, 299–305, 1962

    MATH  Google Scholar 

  114. Garnet, H. and Crouzet-Pascal, J., Transient response of a circular cylinder of arbitrary thickness, in an elastic medium, to a plane dilatational wave. J. Appl. Mech. 33, 521–531, 1966

    Google Scholar 

  115. Kishima, T., Dynamic response analysis of non-homogeneous ground by BIE-FE hybrid method. Graduation Work, Fac. of Eng., Kyoto Univ. (in Japanese), 1984

    Google Scholar 

  116. Clough, R.W. and Chopra, A.K, Earthquake stress analysis in earth dams. Proc. ASCE 92, EM 2,197–211, 1966

    Google Scholar 

  117. Wong, H.L. and Jennings, P.C., Effects of Canyon Topography on strong ground motion. Bui. Seismo. Soc. Am. 65, 1239 -1257,1975

    Google Scholar 

  118. Sanchez-Sesma, F.J. and Rosenblueth, E., Ground motions at canyons of arbitrary shapes under incident SH waves. Earthq. Eng. Struct. Dyn. 7,441 -450,1979

    Google Scholar 

  119. Alarcon, E., Dominguez, J., and Cano, F., Dynamic stiffness of foundations. New Developments in Boundary Element Methods. C.A. Brebbia (ed.), 264–280, 1980

    Google Scholar 

  120. Dravinski, M., Scattering of SH waves by subsurface topography. Proc. ASCE, EM 1, 1–17, 1982

    Google Scholar 

  121. Dravinski, M., Scattering of elastic waves by an alluvial valley. Proc. ASCE, EM 1, 19–31, 1982

    Google Scholar 

  122. Dravinski, M., Scattering of plane harmonic SH wave by dipping layers of arbitrary shape. Bui. Seismo. Soc. Am. 73, 1303–1319, 1983

    Google Scholar 

  123. Toki, K and Sato, T., Seismic response analyses of ground with irregular profiles by the boundary element method. Boundary Elements. C.A. Brebbia, T. Futagami, and M. Tanaka (eds.), 699–708, Springer, 1983

    Google Scholar 

  124. Nardini, D. and Brebbia, C.A., Transient dynamic analysis by the boundary element method, ibid., 719–730

    Google Scholar 

  125. Kobori, T. and Shinozaki, Y., Applications of the boundary integral equation method to dynamic soil-structure interaction analysis under topographic site condition, ibid., 731–740

    Google Scholar 

  126. Matsuoka, O., Yokoi, T., and Torii, K, The fundamental solution for periodically oscillating line torsional loads on a circular ring interior of a semi-infinite solid and its application, ibid., 741–749

    Google Scholar 

  127. Sato, T., Kawase, H., and Yoshida, J., Dynamic response analysis of rigid foundations subjected to seismic waves by boundary element method, ibid., 765–774

    Google Scholar 

  128. Kobayashi, S., Some problems of the boundary integral equation method in elastodynamics. ibid., 775–784

    Google Scholar 

  129. Mita, A. and Takanashi, W., Dynamic soil-structure interaction analysis by hybrid method, ibid., 785–794

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Kobayashi, S. (1985). Fundamentals of Boundary Integral Equation Methods in Elastodynamics. In: Brebbia, C.A. (eds) Time-dependent and Vibration Problems. Topics in Boundary Element Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82398-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82398-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82400-5

  • Online ISBN: 978-3-642-82398-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics