Skip to main content

Characterization of Reactive Intermediates in Silicon Etching and Deposition Using Laser Techniques

  • Conference paper
Laser Processing and Diagnostics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 39))

  • 207 Accesses

Abstract

Plasma reactive etching and chemical vapor deposition (CVD) are widely used techniques in the fabrication of semiconductor microelectronic devices. Both processes are complex and difficult to characterize because of the large number of reactive components which may be present; in addition, the field gradients present in plasmas and the temperature gradients present in CVD reactors must be considered in any general model of these processes. The use of optical probes for plasma [1,2] and CVD [1,3] processes has begun to provide important information on the elementary reactions taking place in these systems. The high sensitivity and time and energy resolution afforded by laser spectroscopic techniques, in particular, have been extremely valuable for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Wormhoudt, A.C. Stanton, and J. Silver: Proc. SPIE 452 (1983), Spectroscopic Characterization Techniques for Semiconductor Technology.

    Google Scholar 

  2. R.A. Gottscho, R.H. Burton, D.L. Flamm, V.M. Donnelly, and G.P. Davis: J. Appl. Phys. 55, 2707 (1984).

    Article  CAS  Google Scholar 

  3. W.G. Breiland and P. Ho: Electrochemical Soc. Vol. 84–6 (1984), Proc. Ninth Intl. Conf. on Chemical Vapor Deposition (McD. Robinson, C.H.J, van den Brekel, G.W. Cullen, J.M. Blocher, Jr., and P. Rai-Choudhury), pp. 44–59.

    Google Scholar 

  4. D. Harradine, F.R. McFeely, B. Roop, J.I. Steinfeld, D. Denison, L. Hartsough, and J.R. Hollahan: Proc. SPIE 270 (1981), High Power Lasers and Applications, pp. 52–60.

    Google Scholar 

  5. R. Osgood: Ann. Rev. Phys. Chem. 34, 77 (1983).

    Article  CAS  Google Scholar 

  6. T.J. Chuang: J. Chem. Phys. 74, 1453, 1461 (1981).

    Article  CAS  Google Scholar 

  7. F.A. Houle: J. Chem. Phys. 79, 4237 (1983).

    Article  CAS  Google Scholar 

  8. F.A. Houle: J. Chem. Phys. 80, 4851 (1984).

    Article  CAS  Google Scholar 

  9. B. Feuerbacher and R.F. Willis: J. Phys. C: Solid State Phys. 9, 169 (1976).

    Article  CAS  Google Scholar 

  10. M. Cardona and L. Ley (eds.): Photoemission in Solids. I. General Principles, Topics in Applied Physics Vol. 26, Springer-Verlag, Berlin (1978).

    Google Scholar 

  11. P.A. Redhead: Vacuum 12, 203 (1962).

    Article  CAS  Google Scholar 

  12. D. Menzel: in Interactions on Metal Surfaces (R. Gomes, ed.) Topics in Applied Physics Vol. 4, Sprinqer-Verlag, Berlin (1975), pp. 101–142.

    Google Scholar 

  13. H.F. Winters and J.W. Coburn: Appl. Phys. Letts. 34, 70 (1979).

    Article  CAS  Google Scholar 

  14. H.F. Winters and F.A. Houle: J. Appl. Phys. 54, 1218 (1983).

    Article  CAS  Google Scholar 

  15. D.L. Flamm, D.E. Ibbotson, J.A. Mucha, and V.M. Donnelly: Solid State Technology 117 (April, 1983).

    Google Scholar 

  16. F.J. Himpsel and I.P. Batra: J. Vac. Sci. Tech. A2, 952 (1984).

    Google Scholar 

  17. J.S. Francisco, S.A. Joyce, J.I. Steinfeld, and F. Walsh: J. Phys. Chem. (in press).

    Google Scholar 

  18. The yield of dissociation products is, in general, a logarithmically increasing function of infrared fluence; see for example H.W. Galbraith and J.R. Ackerhalt: in Laser-Induced Chemical Processes (J.I. Steinfeld, ed.), Plenum Press, New York (1981), pp. 1–44.

    Google Scholar 

  19. Such nodules are also observed in the formation of polycrystalline Si from Si CI A in laser-heated substrates: see V. Baranauskas, C.I.Z. Mammana, R.E. Klinaer, and J.E. Greene: Appl. Phys. Letts. 36, 930 (1980).

    Article  CAS  Google Scholar 

  20. C.B. Zarowin: Thin Solid Films 85, 33 (1981).

    Article  CAS  Google Scholar 

  21. H. Schäfer: Chemical Transport Reactions, Academic Press, New York (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joyce, S.A., Roop, B., Schultz, J.C., Suzuki, K., Thoman, J., Steinfeld, J.I. (1984). Characterization of Reactive Intermediates in Silicon Etching and Deposition Using Laser Techniques. In: Bäuerle, D. (eds) Laser Processing and Diagnostics. Springer Series in Chemical Physics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82381-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82381-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82383-1

  • Online ISBN: 978-3-642-82381-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics