Laser Investigation of the Dynamics of Molecule-Surface Interactions

  • J. Häger
  • Y. R. Shen
  • H. Walther
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 39)


In the past decade the interest in the dynamics of the interaction between molecules and clean and well-characterized solid-state surfaces has steadily increased [1]. Most information has been obtained from angular and velocity distribution measurements in surface scattering experiments, giving a complete insight into the dynamics only where atoms are involved. For molecules, however, it is necessary to have additional information on the internal state distribution. It was recently demonstrated that the population distribution of the rotational and/or vibrational states of the scattered molecules can be investigated by laser-induced fluorescence and laser-induced resonance ionization [2–12]. Furthermore, resonance ionization in connection with time-of-flight measurements gives information on the velocity distributions of the scattered particles [13]. As these measurements are angle and state-selective, they yield a full description of the average energy and momentum exchange between the molecules and the surface. Such investigations were performed in our laboratory for the NO/Pt system as well as for the weak inelastic NO/graphite system and are discussed in the following.


Velocity Distribution Angular Distribution Rotational State Rotational Energy Graphite Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example F.O. Goodman and H.Y. Wachman, “Dynamics of Gas Surface Scattering”, (Academic Press, N.Y., 1976 ).Google Scholar
  2. 2.a)
    a) F. Frenkel, J. Häger, W. Krieger, H. Walther, C.T. Campbell, G. Erti, H. Kuipers, and J. Segner, Phys. Rev. Lett. 46, 152 (1981)CrossRefGoogle Scholar
  3. 2b).
    F. Frenkel, J. Häger, W. Krieger, H. Walther, G. Erti, J. Segner, and W. Vielhaber, Chem. Phys. Lett. 90, 225 (1982)CrossRefGoogle Scholar
  4. 2c).
    G. Erti, H. Robota, J. Segner, W. Vielhaber, F. Frenkel, J. Häger, W. Krieger, and H. Walther, Surf. Sci. 131, 273 (1983).Google Scholar
  5. 3.a)
    a) G.M. McClelland, G.D. Kubiak, H.G. Rennagel, and R.N. Zare, Phys. Rev. Lett. 46, 831 (1981)CrossRefGoogle Scholar
  6. 3b).
    G.D. Kubiak, J.E. Hurst, Jr., H.G. Rennagel, G.M. McClelland, and R.N. Zare, J. Chem. Phys. 79, 5163 (1983).CrossRefGoogle Scholar
  7. 4.a)
    A.W. Kleyn, A.C. Luntz, and D.J. Auerbach, Phys. Rev. Lett. 47, 1169 (1981)CrossRefGoogle Scholar
  8. 4b).
    A.C. Luntz, A.W. Kleyn, and D.J. Auerbach, J. Chem. Phys. 76, 737 (1982)CrossRefGoogle Scholar
  9. 4c).
    A.C. Luntz, A.W. Kleyn, and D.J. Auerbach, Phys. Rev. B 25, 4273 (1982)Google Scholar
  10. 4d).
    A.W. Kleyn, A.C. Luntz, and D.J. Auerbach, Surf. Sci. 117, 33 (1982).Google Scholar
  11. 5.a)
    M. Asscher, W.L. Guthrie, T.H. Lin, and G.A. Somorjai, Phys. Rev. Lett. 49, 76 (1982)Google Scholar
  12. 5b).
    H. Asscher, W.L. Guthrie, T.H. Lin, and G.A. Somorjai, J. Chem. Phys. 78, 6992 (1983).CrossRefGoogle Scholar
  13. 6.
    H. Zacharias, M.M.T. Loy, and P.A. Roland, Phys. Rev. Lett. 49, 1790 (1982).CrossRefGoogle Scholar
  14. 6.
    J.S. Hayden and G.J. Diebold, J. Chem. Phys. 77, 4767 (1982).Google Scholar
  15. 8.a)
    J.W. Hepburn, F.J. Northrup. G.L. Ogram, J.C. Polanyi, and J.H. Williamson, Chem. Phys. Lett. 85, 127 (1982)CrossRefGoogle Scholar
  16. 8b).
    D. Ettinger, K. Honma, M. Keil, and J.C. Polanyi, Chem. Phys. Lett. 87, 413 (1981).CrossRefGoogle Scholar
  17. 9.
    R.R. Cavanagh and D.S. King, Phys. Rev. Lett. 47, 1829 (1981).CrossRefGoogle Scholar
  18. 10.
    J. Misewich, C.N. Plum, G. Blyholder, P.L. Houston, and R.P. Merrill, J. Chem. Phys. 78, 4245 (1983).CrossRefGoogle Scholar
  19. 11.a)
    D.E. Tevault, L.D. Talley, and M.C. Lin, J. Chem. Phys. 72, 3314 (1980)CrossRefGoogle Scholar
  20. 11b).
    L.D. Talley, W.A. Sanders, D.J. Bogan, and M.C. Lin, Chem. Phys. Lett. 78, 500 (1981).Google Scholar
  21. 12.
    J.B. Cross, and J.B. Lurie, Chem. Phys. Lett. 100, 174 (1983).Google Scholar
  22. 13.
    J. Häger, Y.R. Shen, and H. Walther, submitted for publication in Phys. Rev. Lett.Google Scholar
  23. 14.
    W.L. Guthrie, T.H. Lin, S.T. Ceyer, and G.A. Somorjai, J. Chem Phys. 76, 6398 (1982).CrossRefGoogle Scholar
  24. 15.
    J.W. Gadzuk, U. Landman, E.J. Küster, C.L. Cleveland, and R.N. Barnett, Phys. Rev. Lett. 49, 426 (1982).Google Scholar
  25. 16.
    S.E. Bialkowski, J. Chem. Phys. 78, 600 (1983).CrossRefGoogle Scholar
  26. 17.a)
    R.N. Logan, and R.E. Stickney, J. Chem. Phys. 44, 195 (1966).Google Scholar
  27. 17b).
    W.L. Nichols, and J.H. Weare, J. Chem. Phys. 63, 379 (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. Häger
    • 1
  • Y. R. Shen
    • 1
    • 3
  • H. Walther
    • 1
    • 2
  1. 1.Max-Planck-Institut für QuantenoptikGarchingFed. Rep. of Germany
  2. 2.Sektion PhysikUniversität MünchenGarchingFed. Rep. of Germany
  3. 3.Physics DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations