Advertisement

Excited-State Solvation Dynamics in 4-Aminophthalimide

  • Sheila W. Yeh
  • L. A. Philips
  • S. P. Webb
  • L. F. Buhse
  • J. H. Clark
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 38)

Abstract

Solvation plays a major role in nearly every liquid-phase chemical reaction. Picosecond measurements of the dynamics of excited-state solvation have been exploited in the past for the study of such processes as hydrogen bond formation, “solvent-assisted” intramolecular charge transfer, and conformational isomerization[1–5]. This work explores the solvation dynamics following electronic excitation of isolated solute molecules. Molecules initially undergo a vertical transition to a Franck-Condon excited state, producing electronically excited molecules in ground state solvent environments. The equilibrium solvent configuration around an excited molecule may be significantly different than the ground state solvent configuration. Relaxation to the excited-state configuration would result in a time-dependent red shift in the emission spectrum.

Keywords

Intramolecular Charge Transfer Excited Molecule Isosbestic Point Streak Camera Conformational Isomerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Declemy, C. Rulliere, and P. Kottis, Chem. Phys. Lett. 101, 401 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    J. D. Simon and K. S. Peters, J. Phys. Chem. 86, 4855 (1983)CrossRefGoogle Scholar
  3. 3.
    D. Huppert, H. Kanety, and E. M. Kosower, Faraday Discuss. Chem. Soc. 74, 161 (1982).Google Scholar
  4. 4.
    D. Huppert, S. D. Rand, P. M. Rentzepis, P. F. Barbara, W. S. Struve, and Z. R. Grabowski, J. Chem. Phys. 75, 5714 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    S. P. Velsko and G. R. Fleming, J. Chem. Phys. 76, 3553 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    W. R. Ware, S. K. Lee, G. J. Brant, and P. T.-Chow, J. Chem. Phys. 54, 4729 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Wang, M. McAuliffe, F. Novak, and K. B. Eisenthal, J. Phys. Chem, 85, 3736 (1981).CrossRefGoogle Scholar
  8. 8.
    M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977); program from Quantum Chemistry Program Exchange, Indiana University, QCPE No. 455.Google Scholar
  9. 9.
    J. F. Ireland and P. A. H. Wyatt, Adv. Phys. Org. Chem. 12, 131 (1976).CrossRefGoogle Scholar
  10. 10.
    A. J. Campillo, J. H. Clark, S. L. Shapiro, K. R. Winn, and P. K. Woodbridge, Chem. Phys. Lett. 67, 218 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Sheila W. Yeh
    • 1
    • 2
    • 3
  • L. A. Philips
    • 1
    • 2
    • 3
  • S. P. Webb
    • 1
    • 2
    • 3
  • L. F. Buhse
    • 1
    • 2
    • 3
  • J. H. Clark
    • 1
    • 2
    • 3
  1. 1.Laboratory of Chemical BiodynamicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations