Advertisement

Picosecond Chemistry of Collisionless Molecules in Supersonic Beams

  • A. H. ZewaiI
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 38)

Abstract

The dynamics of collisionless intramolecular vibrational-energy redistribution (IVR), bond breakage, and bond formation in large isolated molecules is currently a very important and challenging problem. A fruitful approach to this problem involves the study, via direct measurements in the time domain, of the decay parameters of energetically excited molecules. Using such an approach one can determine unimolecular rate constants as well as study any quantum mechanical coherence phenomena that may be involved in a decay process. Furthermore, in cold beams these rates and coherence effects can be studied as a function of the energy and character of individual vibrational modes in a molecule. The results of such studies are important to understanding the nature of energy flow within molecules and to assessing the possibility of vibrational mode-selective laser chemistry [1].

Keywords

Rotational Temperature Picosecond Laser Quantum Beat Polarization Anisotropy Coherence Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e.g., A. H. Zewail: Physics Today 33, 27 (1980)CrossRefGoogle Scholar
  2. 2.
    For a recent review see, A. H. Zewail: Faraday Discuss. Chem. Soc. 75, 315 (1983)Google Scholar
  3. 3.
    Wm. R. Lambert, P. M. Felker and A. H. Zewail: J. Chem. Phys. 75, 5958 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    P. M. Felker and A. H. Zewail: Chem. Phys. Lett. 102, 113 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    W. R. Lambert, P. M. Felker and A. H. Zewail: J. Ch em. Phys., Sept. (1984)Google Scholar
  6. 6.
    J. A. Syage, Wm. R. Lambert, P. M. Felker, A. H. Zewail and R. M. Hochstrasser: Chem. Phys. Lett. 88, 266 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    P. M. Felker, Wm. R. Lambert and A. H. Zewail: Chem. Phys. Lett. 89, 309 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    J. F. Shepanski, B. W. Keelan and A. H. Zewail: Chem. Phys. Lett. 103, 9 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    J. A. Syage, F. Al Adel and A. H. Zewail: Chem. Phys. Lett. 103, 15 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    P. M. Felker, Wm. R. Lambert and A. H. Zewail: J. Chem. Phys. 77, 1603 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    P. M. Felker, J. A. Syage, Wm. R. Lambert and A. H. Zewail: Chem. Phys. Lett. 92, 1 (1982)ADSCrossRefGoogle Scholar
  12. J. A. Syage, P. M. Felker and A. H. Zewail: J. Chem. Phys., Sept. (1984)Google Scholar
  13. 12.
    P. M. Felker and A. H. Zewail: Chem. Phys. Lett. 94, 448 (1983); ibid. p. 454;ADSCrossRefGoogle Scholar
  14. P. M. Felker and A. H. Zewail: J. Chem. Phys. 78, 5266 (1983).ADSCrossRefGoogle Scholar
  15. 13.
    L. R. Khundkar, P. M. Felker and A. H. Zewail: work in progress.Google Scholar
  16. 14.
    D. M. Millar and A. H. Zewail: Chem. Phys. 72, 381 (1982)ADSCrossRefGoogle Scholar
  17. 15.
    J. W. Perry, N. F. Scherer and A. H. Zewail: Chem. Phys. Lett. 103, 1 (1983)ADSCrossRefGoogle Scholar
  18. 16.
    N. F. Scherer, J. F. Shepanski and A. H. Zewail: J. Chem. Phys., accepted for publicationGoogle Scholar
  19. 17.
    P. M. Felker and A. H. Zewail: Phys. Rev. Lett., submitted for publicationGoogle Scholar
  20. 18.
    P. M. Felker and A. H. Zewail: Chem. Phys. Lett., in press (1984)Google Scholar
  21. 19.
    N. Bloembergen and A. H. Zewail: Feature Article in J. Phys. Chem. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • A. H. ZewaiI
    • 1
  1. 1.Arthur Amos Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations