3 MHz Amplifier for Femtosecond Optical Pulses

  • M. C. Downer
  • R. L. Fork
  • M. Islam
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 38)


We describe a system designed specifically for amplification of femtosecond optical pulses [1,2] at high (3 MHz) repetition rate. A key problem in high repetition rate amplification is that the energy of the available pump pulses is only a few microjoules as compared to the hundreds of millijoules available for low repetition rate amplifiers [2]. We resolve this problem, in part, by using multiple collinear passes to extract efficiently the pump pulse energy while also maintaining the transverse coherence and femtosecond duration of the amplified pulse. In addition we have for the first time cavity dumped the source laser, a colliding pulse mode-locked ring laser [3] while maintaining the femtosecond pulse duration. The pulse energy incident on the 3 MHz amplifier has thereby been increased by an order of magnitude, thus reducing the amplification requirements. Our amplifier, like previous high repetition rate amplifiers [4,5], employs a cavity dumped argon ion laser as the pump. The unique features of our system are the amplification of femtosecond, rather than picosecond, pulses and the use of an exactly collinear pumping geometry.


Pulse Train Pump Pulse Femtosecond Pulse Pump Pulse Energy Source Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. L. Fork, C. V. Shank, R. Yen and C. A. Hirlimann, IEEE Jour. of Quant. Elect., QE-19, 500 (1983).ADSCrossRefGoogle Scholar
  2. [2]
    R. L. Fork, C. V. Shank and R. Yen, Applied Physics Letters 41, 223, (1982).ADSCrossRefGoogle Scholar
  3. [3]
    R. L. Fork, B. I. Greene and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).ADSCrossRefGoogle Scholar
  4. [4]
    A. H. Waldeck, W. T. Lotshaw, D. B. McDonald and G. R. Fleming, Chem. Phys. Lett. 88, 257 (1982).ADSCrossRefGoogle Scholar
  5. [5]
    T. L. Gustafson and D. M. Roberts, Opt. Commun., 43, 141 (1982).ADSCrossRefGoogle Scholar
  6. [6]
    R. L. Fork, O. E. Martinez and J. P. Gordon, Opt. Lett. 9, 150 (1984).ADSCrossRefGoogle Scholar
  7. [7]
    J. P. Gordon and R. L. Fork, Opt. Lett. 9, 153 (1984).ADSCrossRefGoogle Scholar
  8. [8]
    H-P Harri, S. Leutwyler and E. Shumacher, Rev. Sci. Inst. 53, 1855 (1982).ADSCrossRefGoogle Scholar
  9. [9]
    A. Migus, C. V. Shank, E. P. Ippen and R. L. Fork, IEEE Jour. of Quant. Elec., QE-18, 101 (1982).ADSCrossRefGoogle Scholar
  10. [10]
    J. G. Fujimoto, A. M. Weiner and E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • M. C. Downer
    • 1
  • R. L. Fork
    • 1
  • M. Islam
    • 2
  1. 1.AT & T Bell LaboratoriesHolmdelUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations