Time-Resolved Laser-Induced Phase Transformation in Aluminum

  • S. Williamson
  • G. Mourou
  • J. C. M. Li
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 38)


Phase transformation in condensed matter is an important area of study in solid state physics since it relates to the genesis and evolution of new microstructure. The mechanisms responsible in such critical phenomena are still not fully understood. Previous experimental information has left unmeasured such important parameters as the minimum number of nuclei and their common critical radius for a transformation to occur as well as the interphase velocity. Several probe techniques have now been developed to time-resolve phase transformations in semiconductors during laser annealing. However, most of these probes (eg. electrical conductivity,1,2 optical reflection,3,4 optical transmission,5 Raman scattering,6 and time of flight mass spectrometry7) supply no direct information about the atomic structure of the material. Probing the structure can reveal when and to what degree a system melts as it is defined by degradation in the long range order of the lattice. True structural probes based on x-ray8 and low energy electron9 diffraction and EXAFS10 with nanosecond time resolution have been developed offering fresh insight into both the bulk and surface dynamics of material structure. Also, a subpicosecond probe based on structural dependent second harmonic generation11 has been demonstrated. But at present, only the technique of picosecond electron diffraction12 can produce an unambiguous picture of the structure on the picosecond timescale. In this letter we report on the results of using this probe to directly observe the laser-induced melting of aluminum.


Electron Pulse Streak Camera Laser Annealing Fluence Level Laser Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Yamada, H. Kotani, K. Yamazaki, K. Yamamoto, and K. Abe, J. Phys. Soc. Japan, 49, 1299 (1980).CrossRefGoogle Scholar
  2. 2.
    G.J. Galvin, M.O. Thompson, J.W. Mayer, R.B. Hamond, N. Paulter and P.S. Peercy, Phys. Rev. Lett., 48, 33 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    D.H. Auston, C.M. Surko, T.N.C. Venkatesan, R.E. Slusher, and J.A. Golovchenko, Appl. Phys. Lett., 33, 437 (1978).Google Scholar
  4. 4.
    C.V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett., 50, 454 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett, 41, 643 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    H.W. Lo and A. Compaan, Phys. Rev. Lett., 44, 1604 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    A. Pospieszczyk, M.A. Harith, and B. Stritzker, J. Appl. Phys., 54, 3176 (1983).CrossRefGoogle Scholar
  8. 8.
    B.C. Larson, C.W. White, T.S. Noggle, and D. Mills, Phys. Rev. Lett., 48, 337 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    R.S. Becker, G.S. Higashi, and J.A. Golovchenko, Phys. Rev. Lett., 52, 307 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    H.M. Epstein, R.E. Schwerzel, P.J. Mallozzi, and B.E. Campbell, J. Am. Chem. Soc., 105, 1466 (1983).CrossRefGoogle Scholar
  11. 11.
    C.V. Shank, R. Yen, and C. Hirliman, Phys. Rev. Lett., 51, 900 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    G. Mourou and S. Williamson, Appl. Phys. Lett., 41, 44 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    D.J. Bradley and W. Sibbett, Appl. Phys. Lett., 27, 382 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    G. Mourou and W. Knox, Appl. Phys. Lett., 36, 623 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    S. Williamson, G. Mourou, and S. Letzring, Proc. 15th Int. Cong. on High Speed Photography, Vol. 348 (I), 197 (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • S. Williamson
    • 1
  • G. Mourou
    • 1
  • J. C. M. Li
    • 2
  1. 1.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA
  2. 2.Department of Mechanical EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations