Advertisement

Stable Active-Passive Mode Locking of an Nd:Phosphate Glass Laser Using Eastman # 5 Saturable Dye

  • L. S. Goldberg
  • P. E. Schoen
Conference paper
  • 123 Downloads
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 38)

Abstract

While the stability of passively mode locked Nd:YAG lasers has been greatly improved in recent years through addition of intracavity acoustooptic loss modulators, relatively little attention has been given to the Nd:glass laser, especially in the very short pulse regime [1–6]. In the hybrid mode locking approach, the active loss modulation reduces the inherent statistical nature of the early-stage pulse build up, while retaining the effect of the saturable absorber as nonlinear loss element and Q switch for final-stage pulse shortening. We have investigated use of the new fast-relaxing saturable absorbing dye Eastman #5 in active-passive mode locking of an Nd:phosphate glass laser. Its use has led to stable mode-locking performance and generation of ~ 6ps duration pulses, largely free of occurrences of satellite pulse structure.

Keywords

Saturable Absorber Streak Camera Glass Laser Short Pulse Generation Phosphate Glass Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kishida and T. Yamane: Optics Commun. 18, 19 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    I.V. Tomov, R. Fedosejevs, and M.C. Richardson: Appl. Phys. Lett. 30, 164 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    W. Seka and J. Bunkenburg: J. Appl. Phys. 49, 2277 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    B.B. Craig, W.L. Faust, L.S. Goldberg, P.E. Schoen, and R.G. Weiss: in Chemical Physics 14: Picosecond Phenomena II, R.M. Hochstrasser, W. Kaiser and C.U. Shank Eds., Berlin, Springer-Verlag (1980), pp. 253–258.Google Scholar
  5. 5.
    M.A. Lewis and J.T. Knudtson: Appl. Opt. 21, 2897 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    H.P. Kortz: IEEE J.Quantum Electron. QE-19, 578 (1983).Google Scholar
  7. 7.
    G.A. Reynolds and K.H. Drexhage: J. Organic Chem. 42, 885 (1977).CrossRefGoogle Scholar
  8. 8.
    B. Kopainsky, W. Kaiser, and K.H. Drexhage: Opt. Commun. 32, 451 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    R.R. Alfano, N.H. Schiller, and G.A. Reynolds: IEEE J. Quantum Electron. QE-17, 290 (1981).Google Scholar
  10. 10.
    C. Kolmeder and W. Zinth: Appl. Phys. 24, 341 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    L.S. Goldberg, P.E. Schoen, and M.J. Mârrone: Appl. Opt. 21, 1474 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • L. S. Goldberg
    • 1
  • P. E. Schoen
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations