Classical Ferromagnetic Chain in a Field; Spin-Waves Versus Non-Perturbative Interactions

  • U. Balucani
  • M. G. Pini
  • A. Rettori
  • V. Tognetti
  • R. Vaia
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 54)

Abstract

One of the more interesting features of magnetic chains is the lack of spontaneous magnetisation at any finite temperature.In one dimension (1-D) this result is quite general and holds irrespective of the quantum or classical nature of the system, as well as of the presence of exchange or single-ion anisotropies [1]. In the classical Heisenberg case, which we shall explicitly consider in the following, all the thermodynamic quantities of the system can be evaluated analytically at any temperature in zero external field [2]. Unfortunately, in the presence of a magnetic field H, the statistical properties of the model can be determined only in a numerical way, e.g. by transfer matrix techniques [3]. At very low temperatures and for H≠ 0, non-interacting spin-wave theory predicts results in good agreement with the numerical data [4, 5]. Larger and larger discrepancies, however, appear as the field is decreased, until for H=0 spin-wave calculations predict a magnetisation<Sz>→−∞, in sharp contrast with the exact result < Sz > = 0. This dramatic failure of an approach which is so successful in the usual 3-D magnets clearly indicates a breakdown in the conventional many-body techniques based on perturbation theory, and requires a new treatment.

Keywords

Anisotropy Paral Cond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.D.Mermin, H.Wagner: Phys.Rev.Lett. 17, 1133 (1966)CrossRefADSGoogle Scholar
  2. 2.
    M.E.Fisher: Am.J.Phys. 32, 343 (1967)CrossRefADSGoogle Scholar
  3. 3.
    M.Blume, P.Heller, N.A.Lurie: Phys. Rev. B 11, 4483 (1975)CrossRefADSGoogle Scholar
  4. 4.
    S.W.Lovesey, J.M.Loveluck: J.Phys. 0 9, 3639 (1976)ADSGoogle Scholar
  5. 5.
    U.Balucani, M.G.Pini, V.Tognetti, A.Rettori: Phys.Rev.B 26, 4974 (1982)CrossRefADSGoogle Scholar
  6. 6.
    U.Balucani, M.G.Pini, V.Tognetti: J.Phys.O (to appear)Google Scholar
  7. 7.
    U.Balucani, M.G.Pini, A.Rettori, V.Tognetti: Phys.Rev.B 29, 1517 (1984)CrossRefADSGoogle Scholar
  8. 8.
    U.Balucani, V.Tognetti, R.Vaia: sent to Phys.Lett.AGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • U. Balucani
    • 1
  • M. G. Pini
    • 1
  • A. Rettori
    • 2
  • V. Tognetti
    • 2
  • R. Vaia
    • 2
  1. 1.Istitudo di Elettronica Quantistica CNRFirenzeItaly
  2. 2.Dipartimento di Fisica dell’UniversitàFirenzeItaly

Personalised recommendations