Anisotropic Fluids

  • Vijay Kumar Stokes

Abstract

This chapter considers some effects that occur when microstructure of a fluid is taken into account. Microstructure has been successfully accounted for by J. L. Ericksen in his theory of anisotropic fluids. Such theories are an outcome of an effort to explain the behavior of liquid crystals.

Keywords

Entropy Anisotropy Torque Vorticity Sorb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ericksen, J. L. (1960). Transversely Isotropic Fluids, Kolloid-Z. 173, 117–122.CrossRefGoogle Scholar
  2. 2.
    Ericksen, J. L. (1960). Anisotropic Fluids, Arch. Ration. Mech. Anal. 4, 231–237.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ericksen, J. L. (1960). Theory of Anisotropic Fluids, Trans. Soc. Rheol. 4, 29–39.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ericksen, J. L. (1961). Conservation Laws of Liquid Crystals, Trans. Soc. Rheol. 5, 23–34.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ericksen, J. L. (1961). Poiseuille Flow of Certain Anisotropic Fluids, Arch. Ration. Mech. Anal. 8, 1–8.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ericksen, J. L. (1962). Orientation Induced by Flow, Trans. Soc. Rheol. 6, 275–291.CrossRefGoogle Scholar
  7. 7.
    Verma, P. D. S. (1962). Couette Flow of Certain Anisotropic Fluids, Arch. Ration. Mech. Anal. 10, 101–107.MATHCrossRefGoogle Scholar
  8. 8.
    Ericksen, J. L. (1967). Continuum Theory of Liquid Crystals, Appl. Mech. Rev. 20, 1029–1032.Google Scholar
  9. 9.
    Ariman, T., Turk, M. A., and Sylvester, N. D. (1973). Microcontinuum Fluid Mechanics–A Review, Int. J. Eng. Sci. 11, 905–930.MATHCrossRefGoogle Scholar
  10. 10.
    Ariman, T., Turk, M. A., and Sylvester, N. D. (1974). Review Article: Applications of Microcontinuum Fluid Mechanics, Int. J. Eng. Sci. 12, 273–293.MATHCrossRefGoogle Scholar
  11. 11.
    Oseen, C. W. (1933). The Theory of Liquid Crystals, Trans. Faraday Soc. 29, 883–899.CrossRefGoogle Scholar
  12. 12.
    Frank, F. C. (1958). On the Theory of Liquid Crystals, Discuss. Faraday Soc. 25, 19–28.CrossRefGoogle Scholar
  13. 13.
    Jeffery, G. B. (1922). The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proc. R. Soc. London Series A 102, 161–179.ADSCrossRefGoogle Scholar
  14. 14.
    Oldroyd, J. G. (1947). A Rational Formulation of the Equations of Plastic Flow for a Bingham Solid, Proc. Cambridge Philos. Soc. 43, 100–105.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Smith, G. F., and Rivlin, R. S. (1957). The Anisotropic Tensors, Q. Appl. Math. 15, 308–314.MathSciNetMATHGoogle Scholar
  16. 16.
    Ericksen, J. L. (1960). A Vorticity Effect in Anisotropic Fluids, J. Polym. Sci. 47, 327–331.ADSCrossRefGoogle Scholar
  17. 17.
    Hand, G. L. (1961). A Theory of Dilute Suspensions, Arch. Ration. Mech. Anal. 7, 81–86.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ericksen, J. L. (1962). Kinematics of Macromolocules, Arch. Ration. Mech. Anal. 9, 1–8.MathSciNetGoogle Scholar
  19. 19.
    Ericksen, J. L. (1962). Hydrostatic Theory of Liquid Crystals, Arch. Ration. Mech. Anal. 9, 371–378.MathSciNetMATHGoogle Scholar
  20. 20.
    Ericksen, J. L. (1962). Nilpotent Energies in Liquid Crystal Theory, Arch. Ration. Mech. Anal. 10, 189–196.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ericksen, J. L. (1963). Singular Surfaces in Anisotropic Fluids, Int. J. Eng. Sci. 1, 157–161.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Green, A. E. (1964). A Continuum Theory of Anisotropic Fluids, Proc. Cambridge Philos. Soc. 60, 123–128.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Leslie, F. M. (1964). The Stability of Certain Anisotropic Fluids, Proc. Cambridge Philos. Soc. 60, 949–955.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Coleman, B. D. (1965). Simple Liquid Crystals, Arch. Ration. Mech. Anal. 2041–58.Google Scholar
  25. 25.
    Kaloni, P. N. (1965). On Certain Steady Flows of Anisotropic Fluids, Int. J. Eng. Sci. 3, 515–532.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kaloni, P. N. (1965). On the Flow of Certain Orientable Fluids Between Two Coaxial Cones, J. Fluid Mech. 23, 511–520.MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Allen, S. J., and DeSilva, C. N. (1966). A Theory of Transversely Isotropic Fluids, J. Fluid Mech. 24, 801–821.ADSMATHCrossRefGoogle Scholar
  28. 28.
    Denn, M. M., and Metzner, A. B. (1966). Elementary Flows of Anisotropic Fluids, Trans. Soc. Rheol. 10, 215–227.CrossRefGoogle Scholar
  29. 29.
    Ericksen, J. L. (1966). Inequalities in Liquid Crystal Theory, Phys. Fluids 9, 1205–1207.ADSCrossRefGoogle Scholar
  30. 30.
    Ericksen, J. L. (1966). Some Magnetohydrodynamic Effects in Liquid Crystals, Arch. Ration. Mech. Anal. 23, 266–275.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Kaloni, P. N. (1966). Certain Periodic Flows of Anisotropic Fluids, Phys. Fluids 9, 1316–1321.ADSCrossRefGoogle Scholar
  32. 32.
    Leslie, F. M. (1966). Some Constitutive Equations for Anisotropic Fluids, Q. J. Mech. Appl. Math. 19, 357–370.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Allen, S. J., DeSilva, C. N., and Kline, K. A. (1967). Theory of Simple Deformable Directed Fluids, Phys. Fluids 10, 2551–2555.ADSMATHCrossRefGoogle Scholar
  34. 34.
    Ericksen, J. L. (1967). Twisting of Liquid Crystals, J. Fluid Mech. 27, 59–64.ADSCrossRefGoogle Scholar
  35. 35.
    Allen, S. J., and Kline, K. A. (1968). Rectilinear Shear Flow of Fluids with Interacting Deformable Substructure, Z. Angew. Math. Phys. 19, 425–433.MATHCrossRefGoogle Scholar
  36. 36.
    Dafermos, C. M. (1968). Stability of Orientation Patterns of Liquid Crystals Subject to Magnetic Fields, SIAM J. Appl. Math. 16, 1305–1318.CrossRefGoogle Scholar
  37. 37.
    DeSilva, C. N., and Kline, K. A. (1968). Nonlinear Constitutive Equations for Directed Viscoelastic Materials with Memory, Z. Angew. Math. Phys. 19, 128–139.MATHCrossRefGoogle Scholar
  38. 38.
    Ericksen, J. L. (1968). Twist Waves in Liquid Crystals, Q. J. Mech. Appl. Math. 21, 463–465.MATHCrossRefGoogle Scholar
  39. 39.
    Ericksen, J. L. (1968). Twisting of Partially Oriented Liquid Crystals, Q. Appl. Math. 25, 474–479.Google Scholar
  40. 40.
    Kirwan, A. D., Jr. (1968). Constitutive Equations for a Fluid Containing Non-Rigid Structures, Phys. Fluids 11, 1440–1446.ADSMATHCrossRefGoogle Scholar
  41. 41.
    Kline, K. A., and Allen, S. J. (1968). On Continuum Theories of Suspensions of Deformable Particles, Z. Angew. Math. Phys. 19, 898–905.MATHCrossRefGoogle Scholar
  42. 42.
    Kline, K. A., and Allen, S. J. (1968). Heat Conduction in Fluids with Substructure, Z. Angew. Math. Mech. 48, 435–443.MATHCrossRefGoogle Scholar
  43. 43.
    Leslie, F. M. (1968). Some Constitutive Equations for Liquid Crystals, Arch. Ration. Mech. Anal. 28, 265–283.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Leslie, F. M. (1968). Some Thermal Effects in Cholesteric Liquid Crystals, Proc. R. Soc. London Series A 307, 359–372.ADSCrossRefGoogle Scholar
  45. 45.
    Ericksen, J. L. (1969). A Boundary Layer Effect in Viscometry of Liquid Crystals, Trans. Soc. Rheol. 13, 9–15.CrossRefGoogle Scholar
  46. 46.
    Ericksen, J. L. (1969). Continuum Theory of Liquid Crystals of the Nematic Type, Mol. Cryst. Liq. Cryst. 7, 153–164.CrossRefGoogle Scholar
  47. 47.
    Ericksen, J. L. (1969). Twisting of Liquid Crystals by Magnetic Fields, Z. Angew. Math. Phys. 20, 383–388.CrossRefGoogle Scholar
  48. 48.
    Kaloni, P. N., and DeSilva, C. N. (1969). Oriented Fluids and the Rheology of Suspensions, Phys. Fluids 12, 994–999.ADSMATHCrossRefGoogle Scholar
  49. 49.
    Kaloni, P. N., and DeSilva, C. N. (1969). Elongational Flow of a Dilute Suspension of Viscoelastic Spheres, Phys. Fluids 12, 2437–2438.ADSCrossRefGoogle Scholar
  50. 50.
    Kaloni, P. N., and DeSilva, C. N. (1969). On the Rheology of Dilute Suspensions of Rigid Particles, Trans. Soc. Rheol. 14, 319–334.CrossRefGoogle Scholar
  51. 51.
    Kirwan, A. D., and Newman, N. (1969). Simple Flow of a Fluid Containing Deformable Structures, Int. J. Eng. Sci. 7, 1067–1078.MATHCrossRefGoogle Scholar
  52. 52.
    Kline, K. A., and Allen, S. J. (1969). Nonsteady Flows of Fluids with Microstructure, Phys. Fluids 13, 263–270.ADSCrossRefGoogle Scholar
  53. 53.
    Kline, K. A., and Allen, S. J. (1969). The Relationship of Pressure Gradient to Blood Velocity Based on a Continuum Theory of Blood, J. Biomech. 2, 313–318.CrossRefGoogle Scholar
  54. 54.
    Leslie, F. M. (1969). Continuum Theory of Cholesteric Liquid Crystals, Mol. Cryst. Liq. Cryst. 7, 407–420.CrossRefGoogle Scholar
  55. 55.
    Allen, S. J., and Kline, K. A. (1970). Fluid Suspensions; Flow Near an Oscillating Plate, Trans. Soc. Rheol. 14, 39–45.MATHCrossRefGoogle Scholar
  56. 56.
    Atkin, R. J. (1970). Poiseuille Flow of Liquid Crystals of the Nematic Type, Arch. Ration. Mech. Analy. 38, 224–240.MathSciNetADSMATHGoogle Scholar
  57. 57.
    Atkin, R. J., and Leslie, F. M. (1970). Couette Flow of Nematic Liquid Crystals, Q. J. Mech. Appl. Math. 23, 53–524.CrossRefGoogle Scholar
  58. 58.
    Currie, P. K. (1970). Couette Flow of a Nematic Liquid Crystal in the Presence of a Magnetic Field, Arch. Ration. Mech. Anal. 37, 222–242.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Dafermos, C. M. (1970). Disinclinations in Liquid Crystals, Q. J. Mech. Appl. Math. 23, S49 - S64.CrossRefGoogle Scholar
  60. 60.
    Kaloni, P. N., and DeSilva, C. N. (1970). A Theory of Oriented Fluids, Phys. Fluids 13, 1708–1716.ADSMATHCrossRefGoogle Scholar
  61. 61.
    Kaloni, P. N., and DeSilva, C. N. (1970). On the Rheology of Dilute Suspensions of Rigid Particles, Trans. Soc. Rheol. 14, 319–334.MATHCrossRefGoogle Scholar
  62. 62.
    Kirwan, A. D., Jr., and Chang, M. S. (1970). Cylindrical Flow of a Fluid Containing Deformable Structures, Int. J. Eng. Sci. 8, 731–742.MATHCrossRefGoogle Scholar
  63. 63.
    Kline, K. A., and Allen, S. J. (1970). Nonsteady Flows of Fluids with Microstructure, Phys. Fluids 13, 263–270.ADSMATHCrossRefGoogle Scholar
  64. 64.
    Allen, S. J., and Kline, K. A. (1971). A Thermodynamical Theory of Fluid Suspensions, Phys. Fluids 14, 1863–1969.ADSMATHCrossRefGoogle Scholar
  65. 65.
    Allen, S. J., Kline, K. A., and Ling, C. C. (1971). Kinematics of De-formable Suspensions, Trans. Soc. Rheol. 15, 177–188.MATHCrossRefGoogle Scholar
  66. 66.
    Lee, J. D., and Eringen, A. C. (1971). Wave Propagation in Nematic Liquid Crystals, J. Chem. Phys. 54, 5027–5034.ADSCrossRefGoogle Scholar
  67. 67.
    Lee, J. D., and Eringen, A. C. (1971). Alignment of Nematic Liquid Crystals, J. Chem. Phys. 55, 4504–4508.ADSCrossRefGoogle Scholar
  68. 68.
    Lee, J. D., and Eringen, A. C. (1971). Boundary Effects of Orientation of Nematic Liquid Crystals, J. Chem. Phys. 55, 4509–4512.ADSCrossRefGoogle Scholar
  69. 69.
    Gordon, R. J., and Schowalter, W. R. (1972). Anisotropic Fluid Theory: A Different Approach to the Dumbell Theory of Dilute Polymer Solutions, Trans. Soc. Rheol. 16, 79–97.MATHCrossRefGoogle Scholar
  70. 70.
    Kline, K. A., and Carmi, S. (1972). On the Stability of Motions of a Dilute Suspension of Rigid Spherical Particles: Universal Stability, Bull. Acad. Pol. Sci. Ser. Sci. Tech. 20, 693–699.MATHGoogle Scholar
  71. 71.
    Allen, S. J., Kline, K. A., and Ling, C. C. (1973). Transient Shear Flow of Fluids with Deformable Microstructures, Acta Mech. 18, 1–20.CrossRefGoogle Scholar
  72. 72.
    Currie, P. K. (1973). Static Solutions with Phase Change for a Nematic Liquid Crystal in a Pipe, Trans. Soc. Rheol. 17, 197–208.MATHCrossRefGoogle Scholar
  73. 73.
    Kline, K. A. (1973). Polymers as Structural Continua: Superposed Oscillatory Shear Flows, Trans. Soc. Rheol. 17, 525–536.CrossRefGoogle Scholar
  74. 74.
    Barratt, P. J. (1974). A Continuum Model for Disinclination Lines in Nematic Liquid Crystals, Q. J. Mech. Appl. Math. 27, 505–522.MATHCrossRefGoogle Scholar
  75. 75.
    Barratt, P. J., and Jenkins, J. T. (1974). Interfacial Effects in the Static Theory of Nematic Liquid Crystals, Q. J. Mech. Appl. Math. 27, 11–127.CrossRefGoogle Scholar
  76. 76.
    Ericksen, J. L. (1974). Liquid Crystals and Cosserat Surfaces, Mech. Appl. Math. 27, 213–219.MATHCrossRefGoogle Scholar
  77. 77.
    Levitskii, S. P., and Listrov, A. T. (1974). Stability of Flow of a Liquid Crystal Layer on an Inclined Plane, J. Appl. Math. Mech. (USSR) 38, 978–987.CrossRefGoogle Scholar
  78. 78.
    Ericksen, J. L. (1976). On Equations of Motion for Liquid Crystals, Q. J. Mech. Appl. Math. 29, 203–208.MATHCrossRefGoogle Scholar
  79. 79.
    Leslie, F. M. (1976). Analysis of a Flow Instability in Nematic Liquid Crystals, J. Phys. D 9, 925–937.ADSCrossRefGoogle Scholar
  80. 80.
    Sandberg, T. K., and Kline, K. A. (1976). Structured Fluid Theory, Acta Mech. 24, 141–155.MATHCrossRefGoogle Scholar
  81. 81.
    Shahinpoor, M. (1976). On the Stress Tensor in Nematic Liquid Crystals, Rheol. Acta 15, 99–103.MATHCrossRefGoogle Scholar
  82. 82.
    Suyazov, V. M. (1976). Hydrodynamics of a Fluid with a Deformable Microstructure, Soy. Appl. Mech. 11, 1108–1115.ADSCrossRefGoogle Scholar
  83. 83.
    Dmitriev, N. M. (1977). Anisotropy Effects in Polymer Solution Flow, Moscow Univ. Mech. Bull. 32, 66–70.Google Scholar
  84. 84.
    Dubois-Violette, E., and Manneville, P. (1978). Stability of Couette Flow in Nematic Liquid Crystals, J. Fluid Mech. 89, 273–303.MathSciNetADSMATHCrossRefGoogle Scholar
  85. 85.
    Duffy, B. R. (1978). Flow of a Liquid with an Anisotropic Viscosity Tensor, J. Non-Newtonian Fluid Mech. 4, 177–193.MATHCrossRefGoogle Scholar
  86. 86.
    Currie, P. K. (1979). Apparent Viscosity During Viscometric Flow of Nematic Liquid Crystals, J. Phys. (Paris) 40, 501–505.ADSCrossRefGoogle Scholar
  87. 87.
    Currie, P. K., and MacSithigh, G. P. (1979). Stability and Dissipation of Solutions for Shearing Flow of Nematic Liquid Crystals, Q. J. Mech. Appl. Math. 32, 499–511.MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Manneville, P. (1979). Theoretical Analysis of Poiseuille Flow Instabilities in Nematics, J. Phys. (Paris) 40, 713–724.CrossRefGoogle Scholar
  89. 89.
    Duffy, B. R. (1980). Flow of a Liquid with an Anisotropic Viscosity Tensor: Inertial Effects, J. Non-Newtonian Fluid Mech. 7, 107–120.MATHCrossRefGoogle Scholar
  90. 90.
    Duffy, B. R. (1980). Flow of a Liquid with an Anisotropic Viscosity Tensor: Some Axisymmetric Flows, J. Non-Newtonian Fluid Mech. 7, 359–367.MATHCrossRefGoogle Scholar
  91. 91.
    Eringen, A. C. (1980). Theory of Anisotropic Micropolar Fluids, Int. J. Eng. Sci. 18, 5–17.MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Barratt, P. J. (1981). Calculation of Shear Rate Thresholds for Homogeneous and Roll Type Instabilities in Nematics Subjected to Simple Shear Flow, J. Phys. D 14, 1831–1846.ADSCrossRefGoogle Scholar
  93. 93.
    Demiray, H. (1981). Constitutive Equation for the Nematic Liquid Crystals, J. Tech. Phys. 22, 217–232.MATHGoogle Scholar
  94. 94.
    Duffy, B. R. (1981). Flow of a Liquid with an Anisotropic Viscosity Tensor: A Skew Initial Orientation, J. Non-Newtonian Fluid Mech. 8, 213–222.MATHCrossRefGoogle Scholar
  95. 95.
    Duffy, B. R. (1981). Flow of a Liquid with an Anisotropic Viscosity Tensor: Elongational Flow, J. Non-Newtonian Fluid Mech. 9, 1–12.MATHCrossRefGoogle Scholar
  96. 96.
    Leslie, F. M. (1981). Viscometry of Nematic Liquid Crystals, Mol. Crys. Liq. Crys. 63, 111–127.CrossRefGoogle Scholar
  97. 97.
    Petrov, M., and Durand, G. (1981). On the Origin of Electrohydrodynamic Instabilities in Smectic C Liquid Crystals, J. Phys. (Paris) Lett. 42, 519–522.Google Scholar
  98. 98.
    Wissbrun, K. F. (1981). Rheology of Rod-Like Polymers in the Liquid Crystalline State, J. Rheol. 25, 619–662.ADSCrossRefGoogle Scholar
  99. 99.
    Barratt, P. J., and Zuniga, I. (1982). Theoretical Investigation of the Pieranski-Guyon Instability in Couette Flow of Nematic Liquid Crystals, J. Non-Newtonian Fluid Mech. 11, 23–36.MATHCrossRefGoogle Scholar
  100. 100.
    Carlsson, T. (1982). Possibility of the Existence of a Positive Leslie Viscosity a2. Proposed Flow Behavior of Disk Like Nematic Liquid Crystals, Mol. Cryst. Liq. Cryst. 89, 57–66.CrossRefGoogle Scholar
  101. 101.
    Volkov, V. S. (1982). Slow Motion of a Sphere Through an Anisotropic, Viscoelastic Fluid, J. Appl. Math. Mech. (USSR) 46, 185–189.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1984

Authors and Affiliations

  • Vijay Kumar Stokes
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurIndia
  2. 2.Corporate Research and DevelopmentGeneral Electric CompanySchenectadyUSA

Personalised recommendations